A187169 Number of 8-step self-avoiding walks on an n X n X n cube summed over all starting positions.
0, 144, 67824, 608928, 2188608, 5299056, 10416624, 18026640, 28617228, 42676728, 60693480, 83155824, 110552100, 143370648, 182099808, 227227920, 279243324, 338634360, 405889368, 481496688, 565944660, 659721624, 763315920, 877215888
Offset: 1
Examples
A solution for 3 X 3 X 3: ..0..8..0.....2..7..0.....3..0..0 ..0..0..0.....1..6..0.....4..5..0 ..0..0..0.....0..0..0.....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187162.
Formula
Empirical: a(n) = 81390*n^3 - 463074*n^2 + 801216*n - 418032 for n>6.
Conjectures from Colin Barker, Apr 21 2018: (Start)
G.f.: 12*x^2*(12 + 5604*x + 28208*x^2 + 13272*x^3 - 6080*x^4 - 1320*x^5 + 748*x^6 + 233*x^7 + 18*x^8) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>10.
(End)
Comments