A187172 T(n,k) is the number of n-step left-handed knight's tours (moves only out two, left one) on a k X k board summed over all starting positions.
1, 4, 0, 9, 0, 0, 16, 8, 0, 0, 25, 24, 0, 0, 0, 36, 48, 16, 0, 0, 0, 49, 80, 60, 8, 0, 0, 0, 64, 120, 128, 48, 0, 0, 0, 0, 81, 168, 220, 176, 16, 0, 0, 0, 0, 100, 224, 336, 384, 136, 0, 0, 0, 0, 0, 121, 288, 476, 664, 456, 88, 0, 0, 0, 0, 0, 144, 360, 640, 1016, 1024, 496, 16, 0, 0, 0, 0, 0
Offset: 1
Examples
One of 98568 n=51 solutions for 16 X 16: 0 1 0 0 0 0 4 0 0 0 0 7 0 0 0 0 0 0 0 0 3 0 0 0 0 6 0 0 0 0 9 0 0 0 2 0 0 0 0 5 0 0 0 0 8 0 0 0 51 0 0 0 0 16 0 0 0 0 13 0 0 0 0 10 0 0 0 17 0 0 0 0 14 0 0 0 0 11 0 0 0 50 0 0 0 0 15 0 0 0 0 12 0 0 0 0 0 0 0 0 18 0 0 0 0 21 0 0 0 0 24 0 0 0 49 0 0 0 0 20 0 0 0 0 23 0 0 0 48 0 0 0 0 19 0 0 0 0 22 0 0 0 0 25 0 0 0 46 0 0 0 0 35 0 0 0 0 26 0 0 0 47 0 0 0 0 36 0 0 0 0 27 0 0 0 0 0 0 0 0 45 0 0 0 0 34 0 0 0 0 29 0 0 0 44 0 0 0 0 37 0 0 0 0 28 0 0 0 43 0 0 0 0 40 0 0 0 0 33 0 0 0 0 30 0 0 0 41 0 0 0 0 38 0 0 0 0 31 0 0 0 42 0 0 0 0 39 0 0 0 0 32 0 0 0 0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..310
Crossrefs
Row 2 is A033996(n-2).
Formula
Empirical:
T(1,k) = k^2;
T(2,k) = 4*k^2 - 12*k + 8;
T(3,k) = 12*k^2 - 64*k + 80 for k > 3;
T(4,k) = 36*k^2 - 260*k + 440 for k > 5;
T(5,k) = 100*k^2 - 920*k + 1984 for k > 7;
T(6,k) = 284*k^2 - 3100*k + 7944 for k > 9;
T(7,k) = 780*k^2 - 9880*k + 29384 for k > 11;
T(8,k) = 2172*k^2 - 30972*k + 103944 for k > 13.
Comments