A187174 Number of 4-step left-handed knight's tours (moves only out two, left one) on an n X n board summed over all starting positions.
0, 0, 0, 8, 48, 176, 384, 664, 1016, 1440, 1936, 2504, 3144, 3856, 4640, 5496, 6424, 7424, 8496, 9640, 10856, 12144, 13504, 14936, 16440, 18016, 19664, 21384, 23176, 25040, 26976, 28984, 31064, 33216, 35440, 37736, 40104, 42544, 45056, 47640, 50296
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..1..0....0..0..3..0....0..0..4..0....0..0..2..0....0..0..1..0 ..4..0..0..0....4..0..0..0....3..0..0..0....1..0..0..0....2..0..0..0 ..0..0..0..2....0..0..0..2....0..0..0..1....0..0..0..3....0..0..0..4 ..0..3..0..0....0..1..0..0....0..2..0..0....0..4..0..0....0..3..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Row 4 of A187172.
Formula
Empirical: a(n) = 36*n^2 - 260*n + 440 for n>5.
G.f.: 8*x^4*(1 + 3*x + 7*x^2 - x^3 - x^4) / (1 - x)^3 (conjectured). - Colin Barker, Apr 22 2018