A187175 Number of 5-step left-handed knight's tours (moves only out two, left one) on an n X n board summed over all starting positions.
0, 0, 0, 0, 16, 136, 456, 1024, 1804, 2784, 3964, 5344, 6924, 8704, 10684, 12864, 15244, 17824, 20604, 23584, 26764, 30144, 33724, 37504, 41484, 45664, 50044, 54624, 59404, 64384, 69564, 74944, 80524, 86304, 92284, 98464, 104844, 111424, 118204, 125184
Offset: 1
Keywords
Examples
Some solutions for 5 X 5: ..1..0..0..0..0....0..0..3..0..0....0..0..0..0..1....0..0..0..0..5 ..0..0..0..3..0....2..0..0..0..0....0..0..2..0..0....0..0..4..0..0 ..0..2..0..0..0....0..0..0..4..0....3..0..0..0..0....1..0..0..0..0 ..0..0..0..0..4....0..1..0..0..0....0..0..0..5..0....0..0..0..3..0 ..0..0..5..0..0....0..0..0..0..5....0..4..0..0..0....0..2..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187172.
Formula
Empirical: a(n) = 100*n^2 - 920*n + 1984 for n>7.
G.f.: 4*x^5*(2 - x)*(2 + 12*x + 18*x^2 + 15*x^3 + 3*x^4) / (1 - x)^3 (conjectured). - Colin Barker, Apr 22 2018
Comments