cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187180 Parse the infinite string 0101010101... into distinct phrases 0, 1, 01, 010, 10, ...; a(n) = length of n-th phrase.

This page as a plain text file.
%I A187180 #48 Sep 03 2025 10:21:52
%S A187180 1,1,2,3,2,3,4,5,4,5,6,7,6,7,8,9,8,9,10,11,10,11,12,13,12,13,14,15,14,
%T A187180 15,16,17,16,17,18,19,18,19,20,21,20,21,22,23,22,23,24,25,24,25,26,27,
%U A187180 26,27,28,29,28,29,30,31,30,31,32,33,32,33,34,35,34,35,36,37,36,37,38,39,38,39,40,41,40,41,42,43,42,43,44,45,44,45,46,47,46,47,48,49,48,49,50,51,50,51,52,53,52,53,54,55,54,55,56,57,56,57,58,59,58,59,60,61
%N A187180 Parse the infinite string 0101010101... into distinct phrases 0, 1, 01, 010, 10, ...; a(n) = length of n-th phrase.
%H A187180 Ray Chandler, <a href="/A187180/b187180.txt">Table of n, a(n) for n = 1..1000</a>
%H A187180 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F A187180 Consider more generally the string 012...k012...k012...k012...k01... with an alphabet of size B, where k = B-1. The sequence begins with B 1's, and thereafter is quasi-periodic with period B^2, and increases by B in each period.
%F A187180 For the present example, where B=2, the sequence begins with two 1's and thereafter increases by 2 in each block of 4: (1,1) (2,3,2,3), (4,5,4,5), (6,7,6,7), ...
%F A187180 From _Colin Barker_, Oct 15 2015: (Start)
%F A187180 a(n) = (1+(-1)^n+(1-i)*(-i)^n+(1+i)*i^n+2*n)/4 for n>1, where i = sqrt(-1).
%F A187180 G.f.: x*(x^5-2*x^4+x^3+x^2+1) / ((x-1)^2*(x+1)*(x^2+1)). (End)
%F A187180 From _Wesley Ivan Hurt_, May 03 2021: (Start)
%F A187180 a(n) = a(n-1)+a(n-4)-a(n-5).
%F A187180 a(n) = floor((n+1+(-1)^floor((n+1)/2))/2) for n > 1. (End)
%e A187180 The sequence begins
%e A187180    1   1
%e A187180    2   3   2   3
%e A187180    4   5   4   5
%e A187180    6   7   6   7
%e A187180    8   9   8   9
%e A187180   10  11  10  11 ...
%p A187180 1,1,seq(op(2*i*[1,1,1,1]+[0,1,0,1]), i=1..100); # _Robert Israel_, Oct 15 2015
%t A187180 Join[{1},LinearRecurrence[{1, 0, 0, 1, -1},{1, 2, 3, 2, 3},119]] (* _Ray Chandler_, Aug 26 2015 *)
%t A187180 CoefficientList[Series[(x^5 - 2 x^4 + x^3 + x^2 + 1)/((x - 1)^2 (x + 1) (x^2 + 1)), {x, 0, 150}], x] (* _Vincenzo Librandi_, Oct 16 2015 *)
%o A187180 (PARI) a(n) = if(n==1, 1, (1 + (-1)^n + (1-I)*(-I)^n + (1+I)*I^n + 2*n) / 4); \\ _Colin Barker_, Oct 15 2015
%o A187180 (PARI) Vec(x*(x^5-2*x^4+x^3+x^2+1) / ((x-1)^2*(x+1)*(x^2+1)) + O(x^100)) \\ _Colin Barker_, Oct 15 2015
%Y A187180 See A187180-A187188 for alphabets of size 2 through 10.
%Y A187180 See also A109337, A187199, A187200, A106249, A083219, A018837.
%Y A187180 Essentially the same as A106249 and A018837.
%K A187180 nonn,easy,changed
%O A187180 1,3
%A A187180 _N. J. A. Sloane_, Mar 06 2011