cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187181 Parse the infinite string 012012012012... into distinct phrases 0, 1, 2, 01, 20, 12, 012, ...; a(n) = length of n-th phrase.

This page as a plain text file.
%I A187181 #18 Nov 05 2015 10:53:09
%S A187181 1,1,1,2,2,2,3,4,3,4,3,4,5,5,5,6,7,6,7,6,7,8,8,8,9,10,9,10,9,10,11,11,
%T A187181 11,12,13,12,13,12,13,14,14,14,15,16,15,16,15,16,17,17,17,18,19,18,19,
%U A187181 18,19,20,20,20,21,22,21,22,21,22,23,23,23,24,25,24,25,24,25,26,26,26,27,28,27,28,27,28,29,29,29,30,31,30,31,30,31,32,32,32,33,34,33,34
%N A187181 Parse the infinite string 012012012012... into distinct phrases 0, 1, 2, 01, 20, 12, 012, ...; a(n) = length of n-th phrase.
%C A187181 See A187180 for details.
%H A187181 Ray Chandler, <a href="/A187181/b187181.txt">Table of n, a(n) for n = 1..1000</a>
%H A187181 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 1, -1).
%F A187181 After the initial block of three 1's, the sequence is quasi-periodic with period 9, increasing by 3 after each block.
%F A187181 From _Colin Barker_, Nov 05 2015: (Start)
%F A187181 a(n) = a(n-1) + a(n-9) - a(n-10) for n>12.
%F A187181 G.f.: x*(x^11-x^10-x^8+x^7+x^6+x^3+1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)).
%F A187181 (End)
%e A187181 The sequence begins
%e A187181 1   1   1
%e A187181 2   2   2   3   4   3   4   3   4
%e A187181 5   5   5   6   7   6   7   6   7
%e A187181 8   8   8   9  10   9  10   9  10
%e A187181 11  11  11  12  13  12  13  12  13
%e A187181 14  14  14  15  16  15  16  15  16   ...
%t A187181 Join[{1, 1},LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1},{1, 2, 2, 2, 3, 4, 3, 4, 3, 4},98]] (* _Ray Chandler_, Aug 26 2015 *)
%o A187181 (PARI) Vec(x*(x^11-x^10-x^8+x^7+x^6+x^3+1)/((x-1)^2*(x^2+x+1)*(x^6+x^3+1)) + O(x^100)) \\ _Colin Barker_, Nov 05 2015
%Y A187181 See A187180-A187188 for alphabets of size 2 through 10.
%K A187181 nonn,easy
%O A187181 1,4
%A A187181 _N. J. A. Sloane_, Mar 06 2011