cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187182 Parse the infinite string 0123012301230123... into distinct phrases 0, 1, 2, 3, 01, 23, 012, ...; a(n) = length of n-th phrase.

This page as a plain text file.
%I A187182 #17 Jan 31 2020 16:06:15
%S A187182 1,1,1,1,2,2,3,2,2,3,3,3,4,5,4,5,4,5,4,5,6,6,7,6,6,7,7,7,8,9,8,9,8,9,
%T A187182 8,9,10,10,11,10,10,11,11,11,12,13,12,13,12,13,12,13,14,14,15,14,14,
%U A187182 15,15,15,16,17,16,17,16,17,16,17,18,18,19,18,18,19,19,19,20,21,20,21,20,21,20,21,22,22,23,22,22,23,23,23,24,25,24,25,24,25,24,25
%N A187182 Parse the infinite string 0123012301230123... into distinct phrases 0, 1, 2, 3, 01, 23, 012, ...; a(n) = length of n-th phrase.
%C A187182 See A187180 for details.
%H A187182 Ray Chandler, <a href="/A187182/b187182.txt">Table of n, a(n) for n = 1..1000</a>
%H A187182 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
%F A187182 From _Colin Barker_, Jan 31 2020: (Start)
%F A187182 G.f.: x*(1 + x^4 + x^6 - x^7 + x^9 + x^12 + x^13 - x^14 + x^15 - 2*x^16 + x^17 - x^18 + x^19) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)).
%F A187182 a(n) = a(n-1) + a(n-16) - a(n-17) for n>20.
%F A187182 (End)
%e A187182 The sequence is quasi-periodic with period 16, increasing by 4 after each block:
%e A187182 1   1   1   1
%e A187182 2   2   3   2   2   3   3   3   4   5   4   5   4   5   4   5
%e A187182 6   6   7   6   6   7   7   7   8   9   8   9   8   9   8   9
%e A187182 10  10  11  10  10  11  11  11  12  13  12  13  12  13  12  13
%e A187182 14  14  15  14  14  15  15  15  16  17  16  17  16  17  16  17
%e A187182 ...
%t A187182 Join[{1, 1, 1},LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1},{1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 5, 4, 5, 4, 5, 4, 5},97]] (* _Ray Chandler_, Aug 26 2015 *)
%o A187182 (PARI) Vec(x*(1 + x^4 + x^6 - x^7 + x^9 + x^12 + x^13 - x^14 + x^15 - 2*x^16 + x^17 - x^18 + x^19) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)) + O(x^80)) \\ _Colin Barker_, Jan 31 2020
%Y A187182 See A187180-A187188 for alphabets of size 2 through 10.
%K A187182 nonn,easy
%O A187182 1,5
%A A187182 _N. J. A. Sloane_, Mar 06 2011