cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187183 Parse the infinite string 012340123401234012340... into distinct phrases 0, 1, 2, 3, 4, 01, 23, 40, 12, ...; a(n) = length of n-th phrase.

This page as a plain text file.
%I A187183 #15 Jan 31 2020 16:06:22
%S A187183 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,6,5,6,5,6,5,6,5,6,7,7,7,7,
%T A187183 7,8,8,8,8,8,9,9,9,9,9,10,11,10,11,10,11,10,11,10,11,12,12,12,12,12,
%U A187183 13,13,13,13,13,14,14,14,14,14,15,16,15,16,15,16,15,16,15,16,17,17,17,17,17,18,18,18,18,18,19,19,19,19,19,20,21,20,21,20
%N A187183 Parse the infinite string 012340123401234012340... into distinct phrases 0, 1, 2, 3, 4, 01, 23, 40, 12, ...; a(n) = length of n-th phrase.
%C A187183 See A187180 for details.
%H A187183 Ray Chandler, <a href="/A187183/b187183.txt">Table of n, a(n) for n = 1..1000</a>
%H A187183 <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
%F A187183 After the initial block of five 1's, the sequence is quasi-periodic with period 25, increasing by 5 after each block.
%F A187183 From _Colin Barker_, Jan 31 2020: (Start)
%F A187183 G.f.: x*(1 + x^5 + x^10 + x^15 + x^20 + x^21 - x^22 + x^23 - x^24 - x^26 + x^27 - x^28 + x^29) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)*(1 + x^5 + x^10 + x^15 + x^20)).
%F A187183 a(n) = a(n-1) + a(n-25) - a(n-26) for n>30.
%F A187183 (End)
%t A187183 Join[{1, 1, 1, 1},LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1},{1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6},96]] (* _Ray Chandler_, Aug 26 2015 *)
%o A187183 (PARI) Vec(x*(1 + x^5 + x^10 + x^15 + x^20 + x^21 - x^22 + x^23 - x^24 - x^26 + x^27 - x^28 + x^29) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)*(1 + x^5 + x^10 + x^15 + x^20)) + O(x^80)) \\ _Colin Barker_, Jan 31 2020
%Y A187183 See A187180-A187188 for alphabets of size 2 through 10.
%K A187183 nonn,easy
%O A187183 1,6
%A A187183 _N. J. A. Sloane_, Mar 06 2011