cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187189 T(n,k) = Number of n-turn rook's tours on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 8, 0, 16, 36, 8, 0, 25, 96, 108, 8, 0, 36, 200, 480, 288, 0, 0, 49, 360, 1400, 2208, 720, 0, 0, 64, 588, 3240, 9200, 9792, 1440, 0, 0, 81, 896, 6468, 27720, 58800, 40896, 2304, 0, 0, 100, 1296, 11648, 68208, 231840, 364800, 156672, 2664, 0, 0, 121, 1800
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2011

Keywords

Examples

			Table starts
.1.4....9......16.......25........36........49........64.......81.....100
.0.8...36......96......200.......360.......588.......896.....1296....1800
.0.8..108.....480.....1400......3240......6468.....11648....19440...30600
.0.8..288....2208.....9200.....27720.....68208....146048...282528..505800
.0.0..720....9792....58800....231840....705600...1800960..4046112.8251200
.0.0.1440...40896...364800...1902240...7197120..21960960.57407616
.0.0.2304..156672..2169600..15220800..72182880.264520704
.0.0.2664..551232.12319200.118332000.709921800
.0.0.1512.1760256.66746400.893246400
.0.0....0.5013504
Some n=3 solutions for 3 X 3
..0..0..1....0..0..3....3..2..0....1..0..0....0..0..1....0..0..0....0..0..3
..0..0..0....0..0..2....0..1..0....0..0..0....0..3..2....0..0..0....0..0..1
..0..3..2....0..0..1....0..0..0....2..0..3....0..0..0....1..3..2....0..0..2
		

Crossrefs

Row 2 is A035006.

Formula

Empirical: T(1,k) = k^2.
Empirical: T(2,k) = 2*k^3 - 2*k^2.
Empirical: T(3,k) = 4*k^4 - 10*k^3 + 6*k^2.
Empirical: T(4,k) = 8*k^5 - 34*k^4 + 48*k^3 - 22*k^2.
Empirical: T(5,k) = 16*k^6 - 98*k^5 + 228*k^4 - 238*k^3 + 92*k^2.
Empirical: T(6,k) = 32*k^7 - 258*k^6 + 846*k^5 - 1426*k^4 + 1234*k^3 - 428*k^2.
Empirical: T(7,k) = 64*n^8 - 642*n^7 + 2718*n^6 - 6346*n^5 + 8770*n^4 - 6788*n^3 + 2224*n^2.
Empirical: T(8,k) = 128*k^9 - 1538*k^8 + 7956*k^7 - 23556*k^6 + 44586*k^5 - 55218*k^4 + 40894*k^3 - 13252*k^2.