This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187215 #55 May 20 2016 04:13:48 %S A187215 1,4,6,11,10,21,14,26,25,31,22,52,26,45,54,57,34,82,38,82,72,73,46, %T A187215 119,71,87,90,108,58,161,62,120,108,115,134,181,74,129,126,193,82,221, %U A187215 86,172,218,157,94,252,141,190,162,204,106,285,202,233 %N A187215 Sum of the elements of the absolute difference table of the divisors of n. %C A187215 First differs from A273103 at a(14). - _Omar E. Pol_, May 15 2016 %H A187215 Alois P. Heinz, <a href="/A187215/b187215.txt">Table of n, a(n) for n = 1..10000</a> %F A187215 a(n) = 2n, if n is prime. %F A187215 a(2^k) = A125128(k+1), k >= 0. - _Omar E. Pol_, May 15 2016 %e A187215 For n = 14 the divisors of 14 are 1, 2, 7, 14, and the absolute difference triangle of the divisors is %e A187215 1 . 2 . 7 . 14 %e A187215 . 1 . 5 . 7 %e A187215 . . 4 . 2 %e A187215 . . . 2 %e A187215 The sum of all elements of the triangle is 1 + 2 + 7 + 14 + 1 + 5 + 7 + 4 + 2 + 2 = 45, so a(14) = 45. %p A187215 with(numtheory): %p A187215 DD:= l-> [seq(abs(l[i]-l[i-1]), i=2..nops(l))]: %p A187215 a:= proc(n) local l; %p A187215 l:= sort([divisors(n)[]], `>`); %p A187215 add(j, j=[seq((DD@@i)(l)[], i=0..nops(l)-1)]); %p A187215 end: %p A187215 seq(a(n), n=1..100); # _Alois P. Heinz_, Aug 02 2011 %t A187215 Table[Total@ Flatten@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 56}] (* _Michael De Vlieger_, May 18 2016 *) %Y A187215 Row sums of triangle A187207. %Y A187215 Cf. A000203, A056538, A187203, A187209, A273103. %K A187215 nonn,easy %O A187215 1,2 %A A187215 _Omar E. Pol_, Aug 02 2011 %E A187215 More terms from _Alois P. Heinz_, Aug 02 2011 %E A187215 Edited by _Omar E. Pol_, May 19 2016