cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187252 Number of cycles with at least 3 alternating runs in all permutations of [n] (it is assumed that the smallest element of a cycle is in the first position).

Original entry on oeis.org

0, 0, 0, 0, 2, 26, 260, 2508, 25040, 265552, 3018144, 36827872, 481850240, 6743052672, 100629754112, 1596624594688, 26853667866624, 477435143587840, 8949520012611584, 176443253945217024, 3650510179312910336, 79093615773747232768, 1791150489194147512320
Offset: 0

Views

Author

Emeric Deutsch, Mar 08 2011

Keywords

Comments

a(n) = Sum_{k>=0} k * A187250(n,k).

Examples

			a(4) = 2 because among the permutations of {1,2,3,4} only 3421=(1324) and 4312=(1423) have cycles with more than 2 alternating runs.
		

Crossrefs

Programs

  • Maple
    g := ((1-2*z-exp(2*z)-4*ln(1-z))*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
  • PARI
    { my(z='z+O('z^33)); concat( [0,0,0,0], Vec(serlaplace(-(1/4)*(2*z-1+exp(2*z)+4*log(1-z))/(1-z)))) } \\ Joerg Arndt, Apr 16 2017

Formula

E.g.f.: g(z) = -(1/4)*(2*z - 1 + exp(2*z) + 4*log(1-z)) / (1-z).
a(n) ~ n! * log(n) * (1 + (gamma - (1+exp(2))/4) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 10 2021
Conjecture D-finite with recurrence a(n) +(-2*n-3)*a(n-1) +(n+7)*(n-1)*a(n-2) +4*(-n^2+2*n+1)*a(n-3) +4*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 22 2022