cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187255 Number of isolated vertices in all 3-noncrossing RNA structures on n vertices.

Original entry on oeis.org

0, 1, 2, 4, 10, 29, 88, 281, 928, 3170, 11108, 39844, 145700, 542099, 2047390, 7837154, 30359390, 118877686, 470023034, 1874858180, 7538907394, 30538466279, 124544812652, 511112081854, 2109676656860, 8754763717529, 36512355688438, 152987775947396
Offset: 0

Views

Author

Emeric Deutsch, Apr 24 2011

Keywords

Examples

			a(4)=10 because in ABAB, AIAI, AIIA, IAIA, and IIII, where pairs of A's and pairs of B's are assumed to be joined by an arc, we have a total of 0+2+2+2+4=10 isolated vertices (the I's).
		

Crossrefs

Programs

  • Maple
    c := proc (n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: T := proc (n, k) if `mod`(n-k, 2) = 0 then sum((-1)^b*binomial(n-b, b)*binomial(n-2*b, k)*(c((1/2)*n-(1/2)*k-b)*c((1/2)*n-(1/2)*k-b+2)-c((1/2)*n-(1/2)*k-b+1)^2), b = 0 .. (1/2)*n-(1/2)*k) else 0 end if end proc: seq(add(k*T(n, k), k = 0 .. n), n = 0 .. 27);

Formula

a(n) = Sum_{k=0..n} k*A187253(n,k).
a(n) = Sum_{k=0..n} k*T(n,k), where T(n,k) = Sum_{j=0..(n-k)/2} (-1)^j*binomial(n-j,j)*binomial(n-2j,k)*(c((n-k)/2 - 2j)*c((n-k)/2-j+2) - c((n-k)/2-j+1)^2), and c(n)=A000108(n) are the Catalan numbers.
a(n) ~ 3 * 21^(3/2) * (5 + sqrt(21))^(n+1) / (Pi * n^4 * 2^(n+4)). - Vaclav Kotesovec, Dec 10 2021