cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187259 Number of UH^jU's, DH^jD's, and DH^jU's for some j>0, in all peakless Motzkin paths of length n (here U=(1,1), D=(1,-1) and H=(1,0); can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 11, 39, 122, 358, 1008, 2770, 7493, 20049, 53239, 140603, 369837, 969883, 2537685, 6628215, 17288950, 45048932, 117285552, 305159262, 793581817, 2062948149, 5361112383, 13929080271, 36183941553, 93984332531, 244094334682, 633922350198, 1646271999611
Offset: 0

Views

Author

Emeric Deutsch, May 05 2011

Keywords

Comments

a(n)=Sum(k*A098056(n,k), k>=0).

Crossrefs

Programs

  • Maple
    eq := g = 1+z*g+z^2*g*(g-1): g := RootOf(eq, g): gser := series(z^5*g^2*(3*g-1)*(g-1)/((1-z)*(1-z^2*g^2)), z = 0, 38): seq(coeff(gser, z, n), n = 0 .. 33);

Formula

G.f.=z^5*G^2*(3G-1)(G-1)/[(1-z)(1-z^2*G^2)], where G=1+zG+z^2*G(G-1).
Conjecture D-finite with recurrence -(n+1)*(42968*n-187991)*a(n) +(-33354*n^2+888062*n+187991)*a(n-1) +(587317*n^2-5596253*n+61483
17)*a(n-2) +(-549823*n^2+5720814*n-11020859)*a(n-3) +(176865*n^2-2521427*n+8169148)*a(n-4) +(-587317*n^2+6446371*n-18005842)*a(n-5)
+(592791*n^2-6850333*n+19290494)*a(n-6) -(143511*n-619655)*(n-8)*a(n-7)=0. - R. J. Mathar, Jul 22 2022