cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187260 Number of uh^jd's for some j>0, starting at level 0, where u=(1,1), h=(1,0), and d=(1,-1), in all peakless Motzkin paths of length n (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 12, 25, 53, 115, 255, 575, 1315, 3043, 7111, 16756, 39766, 94961, 228003, 550081, 1332839, 3241930, 7913028, 19375635, 47579847, 117149125, 289142441, 715253644, 1773011502, 4403539181, 10956537307, 27307002454, 68164324150, 170404155586, 426584025250, 1069289177950
Offset: 0

Views

Author

Emeric Deutsch, May 05 2011

Keywords

Comments

The terms a(n), starting from n=3, are the partial sums of the sequence A089735.

Examples

			a(4)=3 because the 4 (=A004148(4)) peakless Motzkin paths of length 4, namely hhhh, h(uhd), (uhd)h, and (uhhd) contain 0+1+1+1 subwords of type uh^jd for some j>0, starting at level 0 (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    eq := g = 1+z*g+z^2*g*(g-1): g := RootOf(eq, g): F := z^3*g^2/(1-z): Fser := series(F, z = 0, 38): seq(coeff(Fser, z, n), n = 0 .. 35);
  • Mathematica
    CoefficientList[Series[(-1 + x - x^2 + Sqrt[(1 + (-3 + x)*x)*(1 + x + x^2)])^2 / (4*(1 - x)*x), {x, 0, 40}], x] (* Vaclav Kotesovec, May 29 2022 *)

Formula

G.f.: z^3*g^2/(1-z), where g=1+z*g+z^2*g*(g-1).
a(n) = Sum_{k>=0} k*A098071(n,k).
From Vaclav Kotesovec, May 29 2022: (Start)
G.f.: (-1 + x - x^2 + sqrt((1 + (-3 + x)*x) * (1 + x + x^2)))^2 / (4*(1-x)*x).
a(n) ~ 5^(1/4) * phi^(2*n-1) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. (End)
D-finite with recurrence (n+1)*a(n) +(-4*n+1)*a(n-1) +(5*n-8)*a(n-2) +(-5*n+18)*a(n-3) +(5*n-22)*a(n-4) +(-5*n+32)*a(n-5) +(4*n-31)*a(n-6) +(-n+9)*a(n-7)=0. - R. J. Mathar, Jul 22 2022