This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187262 #15 Oct 04 2018 19:39:07 %S A187262 1,2,3,3,6,7,4,9,11,5,14,21,23,6,17,25,27,7,24,43,53,55,8,29,54,68,71, %T A187262 9,36,73,97,103,10,41,83,109,115,11,52,125,193,225,231,12,57,136,208, %U A187262 241,247,13,70,194,345,450,489,495,14,77,215,382,496,537,543 %N A187262 Irregular triangle T(n,k), n>=1, 1<=k<=A036234(n), read by rows: T(n,k) is the number of nonempty subsets of {1, 2, ..., n} having <=k pairwise coprime elements. %C A187262 T(n,k) = T(n,k-1) for k>A036234(n). The triangle contains all values of T up to the last element of each row that is different from its predecessor. %H A187262 Alois P. Heinz, <a href="/A187262/b187262.txt">Rows n = 1..200, flattened</a> %F A187262 T(n,k) = Sum_{i=1..n,j=1..k} A186972(i,j). %F A187262 T(n,k) = Sum_{j=1..k} A186974(n,j). %F A187262 T(n,k) = Sum_{i=1..n} A186975(i,k). %e A187262 T(5,3) = 21 because there are 21 nonempty subsets of {1,2,3,4,5} having <=3 pairwise coprime elements: {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,5}, {3,4,5}. %e A187262 Irregular Triangle T(n,k) begins: %e A187262 1; %e A187262 2, 3; %e A187262 3, 6, 7; %e A187262 4, 9, 11; %e A187262 5, 14, 21, 23; %e A187262 6, 17, 25, 27; %e A187262 7, 24, 43, 53, 55; %Y A187262 Columns k=1-10 give: A000027, A187263, A187264, A187265, A187266, A187267, A187268, A187269, A187270, A187271. %Y A187262 Rightmost elements of rows give A187106. %Y A187262 Cf. A036234, A186972, A186974, A186975. %K A187262 nonn,tabf %O A187262 1,2 %A A187262 _Alois P. Heinz_, Mar 07 2011