A187276 Number of d+/d- diagonally convex polyominoes with n cells.
1, 2, 6, 19, 61, 196, 630, 2024, 6499, 20860, 66941, 214797, 689201, 2211347, 7095226, 22765414, 73044113, 234366327, 751978494, 2412768983, 7741517800, 24839137696, 79697907919, 255715662623
Offset: 1
Keywords
Examples
A(5) = 61 = A001168(5) - 2, omitting two of the orientations of the V pentomino.
References
- M. Bousquet-Mélou and R. Brak, "Exactly Solved Models", in A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, pp. 46 & 76.
Programs
-
Mathematica
ab[n_,m_,q_]:=Sum[q[n-m-r,k],{r,1,m},{k,m+1-r,n-m-r}] bb[n_,m_,q_]:=Sum[q[n-m-r,m-r],{r,1,m-1}]+Sum[q[n-m-r,k],{r,1,m-1},{k,m-r,n-m-r}] cb[n_,m_,q_]:=Sum[q[n-m-r,m-1-r],{r,1,m-2}] a[n_,m_]:=0/;n<=1||m<=0 a[n_,m_]:=a[n,m]=Sum[(k-m)p[n-m,k],{k,m+1,n-m}]+ab[n,m,b]+2ab[n,m,c]+Sum[(r-1)c[n-m-r,m+1-r],{r,2,m}] b[1,1]=1; b[n_,m_]:=0/;n<=1||m<=0 b[n_,m_]:=b[n,m]=2Sum[p[n-m,k],{k,m,n-m}]+bb[n,m,b]+2bb[n,m,c]+2Sum[(r-1)c[n-m-r,m-r],{r,2,m-1}] c[n_,m_]:=0/;n<=1||m<=0 c[n_,m_]:=c[n,m]=p[n-m,m-1]+cb[n,m,b]+2cb[n,m,c]+Sum[(r-1)c[n-m-r,m-1-r],{r,2,m-2}] p[n_,m_]:=a[n,m]+b[n,m]+c[n,m] Table[Sum[p[n,m],{m,(n+1)/2}],{n,20}]
Extensions
Typo in example corrected by David Bevan, Mar 23 2013
Comments