cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187276 Number of d+/d- diagonally convex polyominoes with n cells.

Original entry on oeis.org

1, 2, 6, 19, 61, 196, 630, 2024, 6499, 20860, 66941, 214797, 689201, 2211347, 7095226, 22765414, 73044113, 234366327, 751978494, 2412768983, 7741517800, 24839137696, 79697907919, 255715662623
Offset: 1

Views

Author

David Bevan, Mar 07 2011

Keywords

Comments

A polyomino is d+ [d-] convex if the intersection of its interior with any line of slope 1 [-1] through the centers of the cells is connected.

Examples

			A(5) = 61 = A001168(5) - 2, omitting two of the orientations of the V pentomino.
		

References

  • M. Bousquet-Mélou and R. Brak, "Exactly Solved Models", in A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, pp. 46 & 76.

Crossrefs

Cf. A001168 (fixed polyominoes), A001169 (row-convex polyominoes).

Programs

  • Mathematica
    ab[n_,m_,q_]:=Sum[q[n-m-r,k],{r,1,m},{k,m+1-r,n-m-r}]
    bb[n_,m_,q_]:=Sum[q[n-m-r,m-r],{r,1,m-1}]+Sum[q[n-m-r,k],{r,1,m-1},{k,m-r,n-m-r}]
    cb[n_,m_,q_]:=Sum[q[n-m-r,m-1-r],{r,1,m-2}]
    a[n_,m_]:=0/;n<=1||m<=0
    a[n_,m_]:=a[n,m]=Sum[(k-m)p[n-m,k],{k,m+1,n-m}]+ab[n,m,b]+2ab[n,m,c]+Sum[(r-1)c[n-m-r,m+1-r],{r,2,m}]
    b[1,1]=1;
    b[n_,m_]:=0/;n<=1||m<=0
    b[n_,m_]:=b[n,m]=2Sum[p[n-m,k],{k,m,n-m}]+bb[n,m,b]+2bb[n,m,c]+2Sum[(r-1)c[n-m-r,m-r],{r,2,m-1}]
    c[n_,m_]:=0/;n<=1||m<=0
    c[n_,m_]:=c[n,m]=p[n-m,m-1]+cb[n,m,b]+2cb[n,m,c]+Sum[(r-1)c[n-m-r,m-1-r],{r,2,m-2}]
    p[n_,m_]:=a[n,m]+b[n,m]+c[n,m]
    Table[Sum[p[n,m],{m,(n+1)/2}],{n,20}]

Extensions

Typo in example corrected by David Bevan, Mar 23 2013