A187286 T(n,k) = number of n-step one or two space at a time rook's tours on a k X k board summed over all starting positions.
1, 4, 0, 9, 8, 0, 16, 36, 8, 0, 25, 80, 108, 8, 0, 36, 140, 328, 288, 0, 0, 49, 216, 672, 1256, 720, 0, 0, 64, 308, 1128, 3084, 4576, 1440, 0, 0, 81, 416, 1696, 5712, 13640, 15424, 2304, 0, 0, 100, 540, 2376, 9120, 28224, 57288, 47648, 2664, 0, 0, 121, 680, 3168
Offset: 1
Examples
Some n=4 solutions for 4X4 ..0..0..0..0....0..0..0..0....0..0..0..0....4..0..0..0....0..0..0..0 ..3..0..4..0....2..0..3..4....2..3..0..0....3..0..2..0....0..0..0..0 ..2..1..0..0....1..0..0..0....0..4..0..0....0..0..0..0....4..0..1..0 ..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..0....3..0..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..117
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 8*k^2 - 12*k for k>1
Empirical: T(3,k) = 56*k^2 - 160*k + 72 for k>3
Empirical: T(4,k) = 380*k^2 - 1532*k + 1224 for k>5
Empirical: T(5,k) = 2540*k^2 - 12896*k + 14016 for k>7
Empirical: T(6,k) = 16752*k^2 - 101420*k + 136160 for k>9
Empirical: T(7,k) = 109360*k^2 - 763776*k + 1206864 for k>11
Empirical: T(8,k) = 708492*k^2 - 5580668*k + 10074432 for k>13
Empirical: T(9,k) = 4562676*k^2 - 39873424*k + 80572112 for k>15
Empirical: T(10,k) = 29244672*k^2 - 280021012*k + 623972304 for k>17
Comments