cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187286 T(n,k) = number of n-step one or two space at a time rook's tours on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 8, 0, 16, 36, 8, 0, 25, 80, 108, 8, 0, 36, 140, 328, 288, 0, 0, 49, 216, 672, 1256, 720, 0, 0, 64, 308, 1128, 3084, 4576, 1440, 0, 0, 81, 416, 1696, 5712, 13640, 15424, 2304, 0, 0, 100, 540, 2376, 9120, 28224, 57288, 47648, 2664, 0, 0, 121, 680, 3168
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Table starts
.1.4....9.....16.......25.......36.......49.......64......81....100....121
.0.8...36.....80......140......216......308......416.....540....680....836
.0.8..108....328......672.....1128.....1696.....2376....3168...4072...5088
.0.8..288...1256.....3084.....5712.....9120....13288...18216..23904..30352
.0.0..720...4576....13640....28224....48232....73408..103692.139056.179500
.0.0.1440..15424....57288...134408...248208...397152..580328.797160
.0.0.2304..47648...228512...616752..1241936..2102944.3192912
.0.0.2664.134944...866888..2732016..6049424.10906120
.0.0.1512.345120..3123680.11693984.28716816
.0.0....0.789696.10664384.48391584

Examples

			Some n=4 solutions for 4X4
..0..0..0..0....0..0..0..0....0..0..0..0....4..0..0..0....0..0..0..0
..3..0..4..0....2..0..3..4....2..3..0..0....3..0..2..0....0..0..0..0
..2..1..0..0....1..0..0..0....0..4..0..0....0..0..0..0....4..0..1..0
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..0....3..0..2..0
		

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 8*k^2 - 12*k for k>1
Empirical: T(3,k) = 56*k^2 - 160*k + 72 for k>3
Empirical: T(4,k) = 380*k^2 - 1532*k + 1224 for k>5
Empirical: T(5,k) = 2540*k^2 - 12896*k + 14016 for k>7
Empirical: T(6,k) = 16752*k^2 - 101420*k + 136160 for k>9
Empirical: T(7,k) = 109360*k^2 - 763776*k + 1206864 for k>11
Empirical: T(8,k) = 708492*k^2 - 5580668*k + 10074432 for k>13
Empirical: T(9,k) = 4562676*k^2 - 39873424*k + 80572112 for k>15
Empirical: T(10,k) = 29244672*k^2 - 280021012*k + 623972304 for k>17