A187288 Number of 3-step one or two space at a time rook's tours on an n X n board summed over all starting positions.
0, 8, 108, 328, 672, 1128, 1696, 2376, 3168, 4072, 5088, 6216, 7456, 8808, 10272, 11848, 13536, 15336, 17248, 19272, 21408, 23656, 26016, 28488, 31072, 33768, 36576, 39496, 42528, 45672, 48928, 52296, 55776, 59368, 63072, 66888, 70816, 74856, 79008
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..0..0..0....0..0..0..0....3..0..0..0....0..0..3..2 ..2..0..0..0....0..0..0..0....0..0..0..0....2..0..1..0....0..0..0..1 ..1..0..0..0....0..0..1..0....1..0..0..0....0..0..0..0....0..0..0..0 ..3..0..0..0....3..0..2..0....2..0..3..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187286.
Formula
Empirical: a(n) = 56*n^2 - 160*n + 72 for n>3.
Conjectures from Colin Barker, Apr 22 2018: (Start)
G.f.: 4*x^2*(2 + 21*x + 7*x^2 + x^3 - 3*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
Comments