A187289 Number of 4-step one or two space at a time rook's tours on an n X n board summed over all starting positions.
0, 8, 288, 1256, 3084, 5712, 9120, 13288, 18216, 23904, 30352, 37560, 45528, 54256, 63744, 73992, 85000, 96768, 109296, 122584, 136632, 151440, 167008, 183336, 200424, 218272, 236880, 256248, 276376, 297264, 318912, 341320, 364488, 388416
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..1..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0 ..0..2..0..0....0..0..4..0....0..0..0..0....0..0..1..0....3..2..0..0 ..0..4..0..0....0..0..0..0....2..3..0..0....0..0..2..3....4..0..0..0 ..0..3..0..0....0..1..3..2....0..4..0..0....0..0..0..4....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187286.
Formula
Empirical: a(n) = 380*n^2 - 1532*n + 1224 for n>5.
Conjectures from Colin Barker, Apr 22 2018: (Start)
G.f.: 4*x^2*(2 + 66*x + 104*x^2 + 43*x^3 - 15*x^4 - 5*x^5 - 5*x^6) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
Comments