A187292 Number of 7-step one or two space at a time rook's tours on an n X n board summed over all starting positions.
0, 0, 2304, 47648, 228512, 616752, 1241936, 2102944, 3192912, 4505424, 6037932, 7789392, 9759616, 11948560, 14356224, 16982608, 19827712, 22891536, 26174080, 29675344, 33395328, 37334032, 41491456, 45867600, 50462464, 55276048, 60308352
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..0..0..0....0..1..0..0....2..3..0..0....6..5..7..0 ..0..5..6..4....0..0..7..0....3..2..7..0....1..5..7..6....0..0..0..0 ..1..2..0..3....4..1..5..0....5..0..6..0....0..4..0..0....0..4..0..3 ..0..0..7..0....3..2..6..0....4..0..0..0....0..0..0..0....0..1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187286.
Formula
Empirical: a(n) = 109360*n^2 - 763776*n + 1206864 for n>11.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 4*x^3*(576 + 10184*x + 23120*x^2 + 17964*x^3 + 7392*x^4 - 280*x^5 - 1716*x^6 - 1604*x^7 - 637*x^8 - 261*x^9 - 47*x^10 - 11*x^11) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>14.
(End)
Comments