A187299 Number of 4-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.
0, 0, 54, 196, 480, 876, 1398, 2036, 2790, 3660, 4646, 5748, 6966, 8300, 9750, 11316, 12998, 14796, 16710, 18740, 20886, 23148, 25526, 28020, 30630, 33356, 36198, 39156, 42230, 45420, 48726, 52148, 55686, 59340, 63110, 66996, 70998, 75116, 79350, 83700
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..1..0..0..0....0..0..0..0....0..0..1..0....0..0..0..0....0..0..0..0 ..0..0..0..0....0..0..0..0....0..0..0..0....0..2..1..0....2..4..3..0 ..2..4..3..0....1..3..2..4....4..3..2..0....0..4..0..0....1..0..0..0 ..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187296.
Formula
Empirical: a(n) = 58*n^2 - 232*n + 180 for n>5.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(27 + 17*x + 27*x^2 - 15*x^3 + 7*x^4 - 5*x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
Comments