A187302 Number of 7-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.
0, 0, 108, 1368, 6264, 15596, 31172, 52256, 79634, 112568, 151266, 195512, 245332, 300704, 361628, 428104, 500132, 577712, 660844, 749528, 843764, 943552, 1048892, 1159784, 1276228, 1398224, 1525772, 1658872, 1797524, 1941728, 2091484, 2246792
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..0..2..1....0..0..0..0....0..2..1..3....0..0..0..0 ..5..4..6..0....0..5..7..6....0..4..3..5....0..7..0..0....7..0..0..1 ..0..3..2..1....0..4..3..0....1..0..2..0....0..6..5..4....6..5..0..0 ..0..0..7..0....0..0..0..0....0..0..7..6....0..0..0..0....0..4..3..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187296.
Formula
Empirical: a(n) = 2776*n^2 - 19580*n + 30728 for n>11.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(54 + 522*x + 1242*x^2 + 400*x^3 + 904*x^4 - 368*x^5 + 393*x^6 - 369*x^7 + 104*x^8 - 108*x^9 + 13*x^10 - 11*x^11) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>14.
(End)
Comments