A187303 Number of 8-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.
0, 0, 72, 2028, 12778, 37124, 81362, 145100, 231552, 338044, 465734, 613212, 780752, 968044, 1175118, 1401948, 1648534, 1914876, 2200974, 2506828, 2832438, 3177804, 3542926, 3927804, 4332438, 4756828, 5200974, 5664876, 6148534, 6651948, 7175118
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..1..0..0....1..6..5..0....0..6..5..7....6..0..7..0....8..7..6..2 ..0..6..5..7....0..0..4..0....0..0..4..0....5..1..0..0....0..0..5..1 ..3..2..4..0....2..7..3..8....2..1..3..8....4..0..8..0....0..0..4..3 ..0..0..0..8....0..0..0..0....0..0..0..0....3..2..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187296.
Formula
Empirical: a(n) = 9878*n^2 - 79388*n + 143388 for n>13.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(36 + 906*x + 3455*x^2 + 2401*x^3 + 3148*x^4 - 196*x^5 + 1607*x^6 - 1337*x^7 + 579*x^8 - 705*x^9 + 137*x^10 - 155*x^11 + 15*x^12 - 13*x^13) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>16.
(End)
Comments