This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187362 #23 Sep 01 2018 21:30:29 %S A187362 2,29,408,5741,80782,1136689,15994428,225058681,3166815962, %T A187362 44560482149,627013566048,8822750406821,124145519261542, %U A187362 1746860020068409,24580185800219268,345869461223138161,4866752642924153522,68480406462161287469,963592443113182178088,13558774610046711780701 %N A187362 Pell trisection: Pell(3*n+2), n >= 0. %C A187362 For the general trisection of a sequence see a _Wolfdieter Lang_ comment under A187357. %H A187362 Colin Barker, <a href="/A187362/b187362.txt">Table of n, a(n) for n = 0..850</a> %H A187362 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,1). %F A187362 a(n) = Pell(3*n+2), n >= 0, with Pell(n):=A000129(n). %F A187362 O.g.f.: (2+x)/(1-14*x-x^2). %F A187362 a(n) = 14*a(n-1) + a(n-2), a(-1)=1, a(0)=2. %F A187362 a(n) = (((7-5*sqrt(2))^n*(-3+2*sqrt(2)) + (3+2*sqrt(2))*(7+5*sqrt(2))^n)) / (2*sqrt(2)). - _Colin Barker_, Jan 25 2016 %t A187362 Table[Fibonacci[3n + 2, 2], {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 16 2016 *) %o A187362 (PARI) Vec((2+x)/(1-14*x-x^2) + O(x^20)) \\ _Colin Barker_, Jan 25 2016 %Y A187362 Cf. A142588 (Pell(3n)), A187361 (Pell(3n+1)). %K A187362 nonn,easy %O A187362 0,1 %A A187362 _Wolfdieter Lang_, Mar 09 2011