A187377 T(n,k)=Number of n-step S, NW and NE-moving king's tours on a kXk board summed over all starting positions.
1, 4, 0, 9, 4, 0, 16, 14, 4, 0, 25, 30, 25, 4, 0, 36, 52, 64, 40, 0, 0, 49, 80, 121, 132, 40, 0, 0, 64, 114, 196, 278, 188, 24, 0, 0, 81, 154, 289, 478, 487, 264, 18, 0, 0, 100, 200, 400, 732, 924, 832, 324, 0, 0, 0, 121, 252, 529, 1040, 1499, 1810, 1418, 404, 0, 0, 0, 144, 310, 676
Offset: 1
Examples
Some n=4 solutions for 4X4 ..0..4..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0 ..3..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....0..0..1..0 ..0..2..0..0....0..0..3..1....3..0..0..0....4..2..0..0....0..0..2..4 ..0..0..1..0....0..0..4..2....4..0..0..0....0..3..1..0....0..0..3..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..287
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 5*k + 2
Empirical: T(3,k) = 9*k^2 - 24*k + 16 for k>1
Empirical: T(4,k) = 27*k^2 - 97*k + 88 for k>2
Empirical: T(5,k) = 69*k^2 - 322*k + 372 for k>3
Empirical: T(6,k) = 183*k^2 - 1035*k + 1432 for k>4
Empirical: T(7,k) = 487*k^2 - 3198*k + 5104 for k>5
Empirical: T(8,k) = 1297*k^2 - 9679*k + 17420 for k>6
Empirical: T(9,k) = 3385*k^2 - 28390*k + 56892 for k>7
Empirical: T(10,k) = 8911*k^2 - 82691*k + 181756 for k>8
Comments