cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187377 T(n,k)=Number of n-step S, NW and NE-moving king's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 4, 0, 16, 14, 4, 0, 25, 30, 25, 4, 0, 36, 52, 64, 40, 0, 0, 49, 80, 121, 132, 40, 0, 0, 64, 114, 196, 278, 188, 24, 0, 0, 81, 154, 289, 478, 487, 264, 18, 0, 0, 100, 200, 400, 732, 924, 832, 324, 0, 0, 0, 121, 252, 529, 1040, 1499, 1810, 1418, 404, 0, 0, 0, 144, 310, 676
Offset: 1

Views

Author

R. H. Hardin Mar 09 2011

Keywords

Comments

Table starts
.1.4..9..16...25....36....49....64.....81....100....121....144....169....196
.0.4.14..30...52....80...114...154....200....252....310....374....444....520
.0.4.25..64..121...196...289...400....529....676....841...1024...1225...1444
.0.4.40.132..278...478...732..1040...1402...1818...2288...2812...3390...4022
.0.0.40.188..487...924..1499..2212...3063...4052...5179...6444...7847...9388
.0.0.24.264..832..1810..3154..4864...6940...9382..12190..15364..18904..22810
.0.0.18.324.1418..3448..6581.10688..15769..21824..28853..36856..45833..55784
.0.0..0.404.2140..6380.13220.22996..35366..50330..67888..88040.110786.136126
.0.0..0.340.3060.10320.24892.46412..75567.111492.154187.203652.259887.322892
.0.0..0.280.3792.17052.44464.92628.159328.245946.350386.472648.612732.770638

Examples

			Some n=4 solutions for 4X4
..0..4..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..3..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....0..0..1..0
..0..2..0..0....0..0..3..1....3..0..0..0....4..2..0..0....0..0..2..4
..0..0..1..0....0..0..4..2....4..0..0..0....0..3..1..0....0..0..3..0
		

Crossrefs

Row 2 is A049451(n-1)
Row 3 is A016790(n-2)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 5*k + 2
Empirical: T(3,k) = 9*k^2 - 24*k + 16 for k>1
Empirical: T(4,k) = 27*k^2 - 97*k + 88 for k>2
Empirical: T(5,k) = 69*k^2 - 322*k + 372 for k>3
Empirical: T(6,k) = 183*k^2 - 1035*k + 1432 for k>4
Empirical: T(7,k) = 487*k^2 - 3198*k + 5104 for k>5
Empirical: T(8,k) = 1297*k^2 - 9679*k + 17420 for k>6
Empirical: T(9,k) = 3385*k^2 - 28390*k + 56892 for k>7
Empirical: T(10,k) = 8911*k^2 - 82691*k + 181756 for k>8