A187382 Number of 8-step S, NW and NE-moving king's tours on an n X n board summed over all starting positions.
0, 0, 0, 404, 2140, 6380, 13220, 22996, 35366, 50330, 67888, 88040, 110786, 136126, 164060, 194588, 227710, 263426, 301736, 342640, 386138, 432230, 480916, 532196, 586070, 642538, 701600, 763256, 827506, 894350, 963788, 1035820, 1110446
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..4..2..0..0....0..0..3..0....0..0..0..5....0..4..2..0....0..0..8..0 ..5..3..1..0....0..2..4..0....0..2..4..6....7..5..3..1....0..0..5..7 ..6..8..0..0....1..0..5..7....0..3..1..7....8..6..0..0....2..4..6..0 ..7..0..0..0....0..0..6..8....0..0..0..8....0..0..0..0....3..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Row 8 of A187377.
Formula
Empirical: a(n) = 1297*n^2 - 9679*n + 17420 for n>6.
Conjectures from Colin Barker, Apr 24 2018: (Start)
G.f.: 2*x^4*(202 + 464*x + 586*x^2 + 48*x^3 + 168*x^4 - 171*x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9.
(End)