cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187391 Floor(r*n), where r=1+sqrt(8)+sqrt(7); complement of A187392.

Original entry on oeis.org

6, 12, 19, 25, 32, 38, 45, 51, 58, 64, 71, 77, 84, 90, 97, 103, 110, 116, 123, 129, 135, 142, 148, 155, 161, 168, 174, 181, 187, 194, 200, 207, 213, 220, 226, 233, 239, 246, 252, 258, 265, 271, 278, 284, 291, 297, 304, 310, 317, 323, 330, 336, 343, 349, 356, 362, 369, 375, 381, 388, 394, 401, 407, 414, 420, 427, 433, 440, 446, 453
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2011

Keywords

Comments

A187391 and A187392 are the Beatty sequences based on r=1+sqrt(8)+sqrt(7) and s=1+sqrt(8)-sqrt(7); 1/r+1/s=1.

Crossrefs

Cf. A187392.

Programs

  • Mathematica
    k=8; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
    Table[Floor[r*n],{n,1,80}]  (* A187391 *)
    Table[Floor[s*n],{n,1,80}]  (* A187392 *)

Formula

a(n)=floor(r*n), where r=1+sqrt(8)+sqrt(7).