This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187392 #6 Mar 04 2015 17:11:27 %S A187392 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,20,21,22,23,24,26,27,28,29, %T A187392 30,31,33,34,35,36,37,39,40,41,42,43,44,46,47,48,49,50,52,53,54,55,56, %U A187392 57,59,60,61,62,63,65,66,67,68,69,70,72,73,74,75,76,78,79,80,81,82,83,85,86,87,88,89,91,92,93,94,95,96,98,99,100,101,102,104,105,106,107,108,109,111,112,113,114,115,117,118 %N A187392 Floor(s*n), where s=1+sqrt(8)-sqrt(7); complement of A189391. %C A187392 A187391 and A187392 are the Beatty sequences based on r=1+sqrt(8)+sqrt(7) and s=1+sqrt(8)-sqrt(7); 1/r+1/s=1. %F A187392 a(n)=floor(s*n), where s=1+sqrt(8)-sqrt(7). %t A187392 k=8; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2); %t A187392 Table[Floor[r*n],{n,1,80}] (* A187391 *) %t A187392 Table[Floor[s*n],{n,1,80}] (* A187392 *) %t A187392 With[{c=1+Sqrt[8]-Sqrt[7]},Floor[c*Range[100]]] (* _Harvey P. Dale_, Mar 04 2015 *) %Y A187392 Cf. A187391. %K A187392 nonn %O A187392 1,2 %A A187392 _Clark Kimberling_, Mar 09 2011