This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187394 #23 Sep 08 2022 08:45:56 %S A187394 1,2,3,4,5,7,8,9,10,11,12,14,15,16,17,18,19,21,22,23,24,25,26,28,29, %T A187394 30,31,32,33,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,53,55,56, %U A187394 57,58,59,60,62,63,64,65,66,67,69,70,71,72,73,74,76,77,78,79,80,82,83,84,85,86,87,89,90,91,92,93,94,96,97,98,99,100,101,103,104,105,106,107,108,110,111,112,113,114,115,117 %N A187394 a(n) = floor(s*n), where s = 4 - sqrt(8); complement of A187393. %C A187394 A187393 and A187394 are the Beatty sequences based on r = 4 + sqrt(8) and s = 4 - sqrt(8); 1/r + 1/s = 1. %C A187394 Let u = 1 + sqrt(2) and v = -1 + sqrt(2). Let U = {h*u, h >= 1} and V = {k*v, k >= 1}. Then A187393(n) is the position of n*u in the ordered union of U and V, and A187394 is the position of n*v. - _Clark Kimberling_, Oct 21 2014 %H A187394 N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence) %F A187394 a(n) = floor(s*n), where s = 4 - sqrt(8). %t A187394 r=4+8^(1/2); s=4-8^(1/2); %t A187394 Table[Floor[r*n],{n,1,80}] (* A187393 *) %t A187394 Table[Floor[s*n],{n,1,80}] (* A187394 *) %o A187394 (Magma) [Floor (n*(4-Sqrt(8))): n in [0..100]]; // _Vincenzo Librandi_, Oct 23 2014 %o A187394 (Python) %o A187394 from sympy import integer_nthroot %o A187394 def A187394(n): return 4*n-1-integer_nthroot(8*n**2,2)[0] # _Chai Wah Wu_, Mar 16 2021 %Y A187394 Cf. A187393. %K A187394 nonn %O A187394 1,2 %A A187394 _Clark Kimberling_, Mar 09 2011