This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187396 #14 Mar 17 2021 19:53:11 %S A187396 1,2,3,4,5,6,8,9,10,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,29, %T A187396 30,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,51,52,53,54,55, %U A187396 56,58,59,60,61,62,63,65,66,67,68,69,70,72,73,74,75,76,77,79,80,81,82,83,84,86,87,88,89,90,91,92,94,95,96,97,98,99,101,102,103,104,105,106,108,109,110,111,112,113,115,116 %N A187396 a(n) = floor(s*n), where s =-2 + sqrt(10); complement of A187395. %C A187396 A187395 and A187396 are the Beatty sequences based on r = 4 + sqrt(10) and s = -2 + sqrt(10); 1/r + 1/s = 1. %F A187396 a(n) = floor(s*n), where s = -2 + sqrt(10). %t A187396 r=4+10^(1/2); s=-2+10^(1/2); %t A187396 Table[Floor[r*n],{n,1,80}] (* A187395 *) %t A187396 Table[Floor[s*n],{n,1,80}] (* A187396 *) %o A187396 (Python) %o A187396 from sympy import integer_nthroot %o A187396 def A187396(n): return integer_nthroot(10*n**2,2)[0]-2*n # _Chai Wah Wu_, Mar 17 2021 %Y A187396 Cf. A187395. %K A187396 nonn %O A187396 1,2 %A A187396 _Clark Kimberling_, Mar 09 2011 %E A187396 Edited by _Clark Kimberling_, Mar 17 2021