A187319 Rank transform of the sequence floor(n/sqrt(3)); complement of A187410.
1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 108, 110, 111, 112, 113, 115, 116, 118, 119, 120, 122, 123, 125, 126, 127, 129
Offset: 1
Keywords
Programs
-
Mathematica
m = 3^(-1/2); seqA = Table[Floor[m*n], {n, 1, 180}] (* A097337 *) seqB = Table[n, {n, 1, 80}]; (* A000027 *) jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]]; limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank [{seqA, seqB}]][[1]] (* A187319 *) Complement[Range[Length[seqA]], limseqU] (* A187410 *) (* by Peter J. C. Moses, Mar 09 2011 *)
Comments