A187447 Array for all multiset choices (multiset repetition class representatives in Abramowitz-Stegun order).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 3, 4, 4, 4, 3, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 6, 4, 1, 1, 3, 5, 6, 5, 3, 1, 1, 3, 4, 4, 4, 4, 3, 1, 1, 2, 3, 4, 4, 3, 2, 1
Offset: 0
Examples
[1], [1, 1], [1, 1, 1], [1, 2, 1], [1, 1, 1, 1], [1, 2, 2, 1], [1, 1, 1, 1, 1], ... a(5,2)=2 because the 5th multiset repetition class defining partition in A-St order is 1^2,2 (a partition of N=4) which defines the 3-multiset {1,1,2}, and there are 2 possibilities to pick 2 elements from the multiset, namely 1,1 and 1,2. a(6,4)=1 from picking all 4 elements from the 6th multiset representative in A-St order: {1,1,1,1}.
Links
Formula
a(n,l), l=0,..,A187446(n), is the number "multiset choose l" for the multiset defined by the n-th multiset repetition class defining partition in A-St order.
a(n,0)=1, n>=0, by definition.
Extensions
Changed in response to a comment by Franklin T. Adams-Watters. - Wolfdieter Lang, Apr 02 2011
Comments