This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187470 #8 Dec 04 2016 19:46:24 %S A187470 1,1,1,1,1,4,3,3,3,3,6,4,5,5,5,9,6,7,7,7,12,8,9,9,9,14,9,11,10,10,17, %T A187470 11,13,12,13,19,12,15,14,14,22,14,17,16,16,25,16,19,18,18,27,17,21,19, %U A187470 20,30,19,23,21,22,33,21,25,23,24,35,22,27,25,26,38,24,29,27,28,40,25,31,28,29 %N A187470 Array: five joint rank sequences tending to A187413, by columns. %C A187470 Precedents are discussed at A187224: adjusted joint rank sequence (AJRS) and the rank transform. %C A187470 Row 1 (A003622, odds) is the AJRS of the lower Wythoff sequence (A000201) and the natural number sequence, A000027. Row 2 (A000201) is the AJRS of A000201 and row 1; row 3 (A005408) is the AJRS of A000201 and row 2; etc. The limit row (not shown) is the rank transform of A000201, which is A187413. The array shows the first five AJRSs and indicates fairly rapid convergence. %e A187470 The array consists of five sequences: %e A187470 1..4..6..9..12..14..17..19..22..25..27..30..33..35..38..40.. %e A187470 1..3..4..6..8...9...11..12..14..16..17..19..21..22..24..25.. %e A187470 1..3..5..7..9...11..13..15..17..19..21..23..25..27..29..31.. %e A187470 1..3..5..7..9...10..12..14..16..18..19..21..23..25..27..28.. %e A187470 1..3..5..7..9...10..13..14..16..18..20..22..24..26..28,,29.. %t A187470 r = (1 + 5^(1/2))/2; %t A187470 seqA = Table[Floor[r*n], {n, 1, 120}]; (* A000201 *) %t A187470 seqB = Table[n, {n, 1, 120}]jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}], %t A187470 Flatten@Position[#1, {_, 2}]} & [Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@seqB}, 1]]; (#1[[1]] &) /@ %t A187470 FixedPointList[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}], 4]; %t A187470 TableForm[%] %t A187470 (* by _Peter J. C. Moses_, Mar 10 2011 *) %Y A187470 A187224, A187469, A187471. %K A187470 nonn,tabf %O A187470 1,6 %A A187470 _Clark Kimberling_, Mar 10 2011