A187504 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,2,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).
1, 0, 0, 0, 1, 1, 2, 2, 2, 4, 6, 7, 13, 17, 19, 36, 49, 56, 105, 141, 160, 301, 406, 462, 868, 1169, 1329, 2498, 3366, 3828, 7194, 9692, 11021, 20713, 27907, 31735, 59642, 80355, 91376, 171731, 231373, 263108, 494481, 666212, 757588
Offset: 0
Formula
Recurrence: a(n)=2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12), for n>=12, with initial conditions {a(k)}={1,0,0,0,1,1,2,2,2,4,6,7}, k=0,1,...,11.
G.f.: (1-2*x^3+x^4+x^5-x^6+x^9-x^10)/(1-2*x^3-3*x^6+x^9+x^12).
Comments