cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187507 T(n,k)=Number of n-step S, E, and NW-moving king's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 5, 0, 16, 16, 6, 0, 25, 33, 31, 2, 0, 36, 56, 74, 36, 0, 0, 49, 85, 135, 115, 40, 0, 0, 64, 120, 214, 236, 184, 36, 0, 0, 81, 161, 311, 399, 435, 272, 20, 0, 0, 100, 208, 426, 604, 788, 772, 330, 12, 0, 0, 121, 261, 559, 851, 1243, 1525, 1224, 390, 6, 0, 0, 144, 320, 710
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Table starts
.1.4..9..16...25....36....49....64....81....100....121....144....169....196
.0.5.16..33...56....85...120...161...208....261....320....385....456....533
.0.6.31..74..135...214...311...426...559....710....879...1066...1271...1494
.0.2.36.115..236...399...604...851..1140...1471...1844...2259...2716...3215
.0.0.40.184..435...788..1243..1800..2459...3220...4083...5048...6115...7284
.0.0.36.272..772..1525..2524..3769..5260...6997...8980..11209..13684..16405
.0.0.20.330.1224..2726..4807..7458.10679..14470..18831..23762..29263..35334
.0.0.12.390.1910..4880..9250.14969.22026..30421..40154..51225..63634..77381
.0.0..6.450.2872..8522.17564.29834.45255..63814..85511.110346.138319.169430
.0.0..0.398.3868.13796.31548.56952.89684.129637.176796.231161.292732.361509

Examples

			Some n=4 solutions for 4X4
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....2..3..4..0
..0..4..2..0....0..3..4..0....3..0..0..0....3..1..0..0....0..1..0..0
..0..0..3..1....0..1..2..0....4..0..0..0....4..2..0..0....0..0..0..0
		

Crossrefs

Row 2 is A045944(n-1)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 4*k + 1
Empirical: T(3,k) = 9*k^2 - 20*k + 10 for k>1
Empirical: T(4,k) = 21*k^2 - 68*k + 51 for k>2
Empirical: T(5,k) = 51*k^2 - 208*k + 200 for k>3
Empirical: T(6,k) = 123*k^2 - 600*k + 697 for k>4
Empirical: T(7,k) = 285*k^2 - 1624*k + 2210 for k>5
Empirical: T(8,k) = 669*k^2 - 4316*k + 6681 for k>6
Empirical: T(9,k) = 1569*k^2 - 11252*k + 19434 for k>7
Empirical: T(10,k) = 3603*k^2 - 28504*k + 54377 for k>8