A187507 T(n,k)=Number of n-step S, E, and NW-moving king's tours on a kXk board summed over all starting positions.
1, 4, 0, 9, 5, 0, 16, 16, 6, 0, 25, 33, 31, 2, 0, 36, 56, 74, 36, 0, 0, 49, 85, 135, 115, 40, 0, 0, 64, 120, 214, 236, 184, 36, 0, 0, 81, 161, 311, 399, 435, 272, 20, 0, 0, 100, 208, 426, 604, 788, 772, 330, 12, 0, 0, 121, 261, 559, 851, 1243, 1525, 1224, 390, 6, 0, 0, 144, 320, 710
Offset: 1
Examples
Some n=4 solutions for 4X4 ..0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0 ..0..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....2..3..4..0 ..0..4..2..0....0..3..4..0....3..0..0..0....3..1..0..0....0..1..0..0 ..0..0..3..1....0..1..2..0....4..0..0..0....4..2..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..290
Crossrefs
Row 2 is A045944(n-1)
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 4*k + 1
Empirical: T(3,k) = 9*k^2 - 20*k + 10 for k>1
Empirical: T(4,k) = 21*k^2 - 68*k + 51 for k>2
Empirical: T(5,k) = 51*k^2 - 208*k + 200 for k>3
Empirical: T(6,k) = 123*k^2 - 600*k + 697 for k>4
Empirical: T(7,k) = 285*k^2 - 1624*k + 2210 for k>5
Empirical: T(8,k) = 669*k^2 - 4316*k + 6681 for k>6
Empirical: T(9,k) = 1569*k^2 - 11252*k + 19434 for k>7
Empirical: T(10,k) = 3603*k^2 - 28504*k + 54377 for k>8
Comments