A187511 Number of 6-step S, E, and NW-moving king's tours on an n X n board summed over all starting positions.
0, 0, 36, 272, 772, 1525, 2524, 3769, 5260, 6997, 8980, 11209, 13684, 16405, 19372, 22585, 26044, 29749, 33700, 37897, 42340, 47029, 51964, 57145, 62572, 68245, 74164, 80329, 86740, 93397, 100300, 107449, 114844, 122485, 130372, 138505, 146884
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....1..2..0..0....0..0..2..0....0..0..6..0....0..0..6..0 ..5..3..0..0....0..3..0..0....0..0..3..1....0..0..4..5....0..0..4..5 ..6..4..2..0....6..4..0..0....0..0..4..5....0..0..2..3....0..1..2..3 ..0..0..0..1....0..5..0..0....0..0..0..6....0..0..0..1....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187507.
Formula
Empirical: a(n) = 123*n^2 - 600*n + 697 for n>4.
Conjectures from Colin Barker, Apr 24 2018: (Start)
G.f.: x^3*(36 + 164*x + 64*x^2 - 11*x^3 - 7*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7.
(End)
Comments