A187512 Number of 7-step S, E, and NW-moving king's tours on an n X n board summed over all starting positions.
0, 0, 20, 330, 1224, 2726, 4807, 7458, 10679, 14470, 18831, 23762, 29263, 35334, 41975, 49186, 56967, 65318, 74239, 83730, 93791, 104422, 115623, 127394, 139735, 152646, 166127, 180178, 194799, 209990, 225751, 242082, 258983, 276454, 294495
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....1..2..0..0....0..5..3..1....0..0..1..2....4..5..6..0 ..0..7..0..0....0..3..4..0....0..6..4..2....0..7..5..3....2..3..7..0 ..1..5..6..0....0..7..5..0....0..7..0..0....0..0..6..4....0..1..0..0 ..2..3..4..0....0..0..6..0....0..0..0..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187507.
Formula
Empirical: a(n) = 285*n^2 - 1624*n + 2210 for n>5.
Conjectures from Colin Barker, Apr 24 2018: (Start)
G.f.: x^3*(1 + x)*(20 + 250*x + 44*x^2 - 20*x^3 - 9*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
Comments