A187515 Number of 10-step S, E, and NW-moving king's tours on an n X n board summed over all starting positions.
0, 0, 0, 398, 3868, 13796, 31548, 56952, 89684, 129637, 176796, 231161, 292732, 361509, 437492, 520681, 611076, 708677, 813484, 925497, 1044716, 1171141, 1304772, 1445609, 1593652, 1748901, 1911356, 2081017, 2257884, 2441957, 2633236
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..1..0..0..0....7..8..9.10....0..7..8..9....0..5..0..1....0..0..0..1 ..2..3..4..5....0..6..0..0....4..5..6.10....8..6..4..2....0..0..0..2 ..0.10..8..6....0..4..5..0....0..3..1..0....9..7..0..3....9..7..5..3 ..0..0..9..7....1..2..3..0....0..0..2..0...10..0..0..0...10..8..6..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187507.
Formula
Empirical: a(n) = 3603*n^2 - 28504*n + 54377 for n>8.
Conjectures from Colin Barker, Apr 24 2018: (Start)
G.f.: x^4*(398 + 2674*x + 3386*x^2 + 1366*x^3 - 172*x^4 - 324*x^5 - 107*x^6 - 15*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>11.
(End)
Comments