cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A187522 Number of 3X3 0..n arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.

Original entry on oeis.org

6, 98, 450, 1590, 3426, 8546, 13992, 26158, 41748, 67588, 90082, 148792, 187474, 260222, 355100, 480620, 569610, 778354, 903974, 1192760, 1466488, 1766846, 1994060, 2603040, 2993262, 3493594, 4070056, 4892770, 5366122, 6633208, 7221322
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Row 2 of A187521

Examples

			Some solutions for 3X3
..0..0..3....2..2..2....2..1..2....3..3..3....0..3..2....2..3..2....1..1..1
..3..3..2....1..1..2....2..1..1....3..3..1....0..2..2....2..3..0....2..2..0
..0..3..2....3..1..2....3..2..2....1..3..1....1..1..1....0..3..0....0..1..0
		

A187517 Number of (n+1)X(n+1) 0..2 arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.

Original entry on oeis.org

31, 98, 354, 1780, 12008, 157694, 2808560, 115232300, 6691316378
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 2 of A187521

Examples

			Some solutions for 4X4
..0..2..0..2....1..1..0..1....0..0..1..0....0..2..0..1....0..0..2..0
..0..2..2..0....2..2..2..1....2..2..2..2....0..2..1..0....2..2..1..2
..2..2..2..2....2..1..1..0....0..1..1..0....1..2..1..1....0..2..1..0
..0..2..0..0....0..1..2..0....2..0..2..0....0..1..0..0....2..2..2..0
		

A187518 Number of (n+1)X(n+1) 0..3 arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.

Original entry on oeis.org

64, 450, 4200, 73764, 2048596, 129034386, 13881494364
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 3 of A187521

Examples

			Some solutions for 4X4
..0..0..1..0....0..1..0..1....2..2..2..3....3..2..3..3....2..2..3..2
..2..2..2..1....0..3..3..2....2..2..1..0....3..2..1..3....2..2..1..2
..2..3..3..3....1..1..1..1....1..2..1..3....1..2..1..1....0..2..1..1
..1..1..0..0....0..3..2..2....0..3..0..0....3..0..1..1....2..3..2..2
		

A187519 Number of (n+1)X(n+1) 0..4 arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.

Original entry on oeis.org

113, 1590, 34776, 1655170, 144075566
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 4 of A187521

Examples

			Some solutions for 4X4
..0..3..1..1....1..1..1..2....0..3..1..2....1..1..3..1....2..2..3..2
..0..1..1..2....1..1..3..0....0..1..1..4....2..2..2..2....2..2..4..1
..2..1..1..0....3..1..3..2....2..1..1..2....0..2..2..1....2..1..2..2
..3..1..3..0....0..2..0..0....2..0..2..4....2..3..4..2....3..4..2..2
		

A187520 Number of (n+1)X(n+1) 0..5 arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.

Original entry on oeis.org

170, 3426, 107990, 8174314, 1201064094
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 5 of A187521

Examples

			Some solutions for 4X4
..0..0..3..2....0..5..1..1....0..0..2..0....0..0..3..0....2..2..3..1
..3..2..1..2....0..5..5..1....3..4..1..1....3..5..3..5....1..1..2..2
..0..2..1..3....4..3..3..3....1..4..1..3....0..5..3..4....2..1..2..1
..2..1..0..0....4..4..0..0....1..2..0..0....3..4..3..4....4..0..2..1
		

A187523 Number of 4X4 0..n arrays with the array of 2X2 subblock determinants antisymmetric and no off-diagonal 2X2 subblock determinant zero.

Original entry on oeis.org

2, 354, 4200, 34776, 107990, 475370, 978568, 2790760, 5647886, 11787078, 17703910, 41527872, 57261832
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Row 3 of A187521

Examples

			Some solutions for 4X4
..2..2..1..1....2..3..1..2....1..3..1..3....2..2..3..3....1..1..0..3
..1..1..1..0....2..3..2..1....1..3..2..2....1..1..1..2....1..1..2..1
..2..1..1..1....3..3..2..2....2..3..2..1....0..1..1..0....3..1..2..3
..3..2..1..1....0..1..0..0....0..2..2..1....3..1..3..0....0..2..0..0
		

A187524 Number of 5 X 5 0..n arrays with the array of 2 X 2 subblock determinants antisymmetric and no off-diagonal 2 X 2 subblock determinant zero.

Original entry on oeis.org

0, 1780, 73764, 1655170, 8174314, 70304076, 193687886
Offset: 1

Views

Author

R. H. Hardin, Mar 10 2011

Keywords

Comments

Row 4 of A187521.

Examples

			Some solutions for 5 X 5
..1..2..2..2..2....0..0..2..1..2....2..2..1..0..1....0..0..3..0..2
..1..2..1..2..1....2..2..2..3..0....1..1..1..2..3....2..1..1..2..0
..0..2..1..1..0....0..2..2..1..2....2..1..1..1..2....3..3..3..3..1
..1..1..1..1..1....2..0..2..1..1....2..0..1..1..1....2..0..1..1..0
..0..2..3..2..2....2..3..3..2..2....2..1..2..3..3....3..2..1..2..0
		

Crossrefs

Cf. A187521.
Showing 1-7 of 7 results.