cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A187529 Number of 3X3 0..n arrays with each 2X2 subblock determinant nonzero and the array of 2X2 subblock determinants symmetric under 90 degree rotation.

Original entry on oeis.org

0, 8, 74, 280, 784, 1970, 3580, 6946, 11726, 19100, 27672, 44092, 58988, 83340, 116344, 156470, 193434, 262028, 316330, 414216, 517530, 629058, 735548, 935702, 1100836, 1299196, 1530340, 1835766, 2068728, 2511536, 2794280, 3249058, 3723336
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Row 2 of A187528

Examples

			Some solutions for 3X3
..2..3..0....0..3..2....0..1..2....3..2..3....3..3..0....1..1..0....1..2..3
..1..3..1....1..3..1....2..2..2....1..1..2....1..2..1....1..3..2....1..1..1
..0..3..2....2..3..0....3..2..1....0..1..3....0..3..3....0..2..2....3..2..1
		

A187525 Number of (n+1)X(n+1) 0..1 arrays with each 2X2 subblock determinant nonzero and the array of 2X2 subblock determinants symmetric under 90 degree rotation.

Original entry on oeis.org

6, 0, 104, 0, 9346, 0, 4278774, 0, 9966039904, 0, 118222727145122, 0, 7149579817467705382, 0, 2205539783282634028931328
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 1 of A187528

Examples

			Some solutions for 4X4
..0..1..0..1....1..1..0..1....1..0..1..1....1..0..1..0....1..1..0..1
..1..0..1..0....1..0..1..0....0..1..0..1....0..1..0..1....1..0..1..1
..0..1..1..1....0..1..0..1....1..0..1..0....1..1..1..0....1..1..0..1
..1..0..1..0....1..1..1..1....0..1..1..1....0..1..0..1....1..0..1..0
		

A187526 Number of (n+1)X(n+1) 0..2 arrays with each 2X2 subblock determinant nonzero and the array of 2X2 subblock determinants symmetric under 90 degree rotation.

Original entry on oeis.org

50, 8, 3790, 1476, 3607148, 296232
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 2 of A187528

Examples

			Some solutions for 4X4
..2..1..0..1....2..0..2..0....1..0..1..0....2..2..0..2....2..2..2..2
..1..0..1..2....0..1..0..1....0..1..0..1....2..1..1..2....1..0..1..0
..1..1..0..1....2..2..2..2....1..2..1..2....2..2..0..2....2..2..0..2
..1..0..1..0....1..2..1..2....0..1..0..1....2..1..1..2....2..1..1..0
		

A187527 Number of (n+1)X(n+1) 0..3 arrays with each 2X2 subblock determinant nonzero and the array of 2X2 subblock determinants symmetric under 90 degree rotation.

Original entry on oeis.org

192, 74, 35026, 20554, 164460556
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Column 3 of A187528

Examples

			Some solutions for 4X4
..3..3..3..3....3..0..3..3....2..3..2..3....0..3..0..3....2..2..1..2
..2..3..2..3....1..3..0..3....0..1..0..1....3..0..3..1....1..0..1..0
..1..0..1..0....3..0..3..1....2..1..2..1....0..3..0..3....2..2..2..2
..1..3..0..3....3..3..0..3....0..1..0..1....3..3..3..1....3..2..3..2
		

A187530 Number of 4X4 0..n arrays with each 2X2 subblock determinant nonzero and the array of 2X2 subblock determinants symmetric under 90 degree rotation.

Original entry on oeis.org

104, 3790, 35026, 220802, 727842, 2327574, 5366230, 13768228, 28531154, 54987216, 90945478
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Row 3 of A187528

Examples

			Some solutions for 4X4
..3..1..2..1....3..3..1..3....3..0..3..1....2..3..3..3....2..1..0..1
..1..0..1..0....2..3..0..3....1..2..0..2....1..0..1..0....2..0..2..1
..0..1..0..1....1..0..1..0....3..0..3..3....3..3..0..3....0..1..0..1
..1..0..1..0....0..3..0..3....0..2..0..2....1..0..1..2....2..3..2..2
		

A187531 Number of 5X5 0..n arrays with each 2X2 subblock determinant nonzero and the array of 2X2 subblock determinants symmetric under 90 degree rotation.

Original entry on oeis.org

0, 1476, 20554, 273102, 992410, 5880944
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Row 4 of A187528

Examples

			Some solutions for 5X5
..2..3..3..0..3....3..3..1..0..1....2..0..2..1..3....0..2..1..0..1
..3..0..1..3..0....1..0..1..3..1....1..1..1..0..2....1..0..1..2..0
..2..3..2..3..1....3..3..2..3..2....2..1..2..1..2....1..2..2..2..1
..1..3..1..0..3....2..3..1..0..1....2..0..1..1..1....0..2..1..0..1
..3..0..3..3..1....1..0..1..3..3....1..1..2..0..2....1..2..2..2..2
		
Showing 1-6 of 6 results.