cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187544 Stirling transform (of the second kind) of the central Lah numbers (A187535).

This page as a plain text file.
%I A187544 #15 Oct 06 2019 07:02:59
%S A187544 1,2,38,1310,66254,4428782,368444078,36691056110,4256199137774,
%T A187544 563672814445742,83921091641375918,13875375391723852910,
%U A187544 2522552600160248918894,500141581330626431059502,107400097037199576065830958
%N A187544 Stirling transform (of the second kind) of the central Lah numbers (A187535).
%H A187544 Vaclav Kotesovec, <a href="/A187544/b187544.txt">Table of n, a(n) for n = 0..300</a>
%F A187544 a(n) = sum(S(n,k)*L(k),k=0..n), where S(n,k) are the Stirling numbers of the second kind and L(n) are the central Lah numbers.
%F A187544 E.g.f.: 1/2 + 1/Pi*K(16(exp(x)-1)) where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
%F A187544 a(n) ~ n! / (2*Pi*n * (log(17/16))^n). - _Vaclav Kotesovec_, Oct 06 2019
%p A187544 a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
%p A187544 seq(sum(combinat[stirling2](n,k)*a(k), k=0..n),n=0..12);
%t A187544 a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
%t A187544 Table[Sum[StirlingS2[n, k]a[k], {k, 0, n}], {n, 0, 20}]
%t A187544 CoefficientList[Series[1/2 + EllipticK[16*(E^x - 1)]/Pi, {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Oct 06 2019 *)
%o A187544 (Maxima) a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
%o A187544 makelist(sum(stirling2(n,k)*a(k),k,0,n),n,0,12);
%Y A187544 Cf. A187536, A008297, A111596, A187536, A187538, A187539, A187540, A187542, A187543, A187545, A187546, A187547, A187548.
%K A187544 nonn,easy
%O A187544 0,2
%A A187544 _Emanuele Munarini_, Mar 11 2011