This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187544 #15 Oct 06 2019 07:02:59 %S A187544 1,2,38,1310,66254,4428782,368444078,36691056110,4256199137774, %T A187544 563672814445742,83921091641375918,13875375391723852910, %U A187544 2522552600160248918894,500141581330626431059502,107400097037199576065830958 %N A187544 Stirling transform (of the second kind) of the central Lah numbers (A187535). %H A187544 Vaclav Kotesovec, <a href="/A187544/b187544.txt">Table of n, a(n) for n = 0..300</a> %F A187544 a(n) = sum(S(n,k)*L(k),k=0..n), where S(n,k) are the Stirling numbers of the second kind and L(n) are the central Lah numbers. %F A187544 E.g.f.: 1/2 + 1/Pi*K(16(exp(x)-1)) where K(z) is the elliptic integral of the first kind (defined as in Mathematica). %F A187544 a(n) ~ n! / (2*Pi*n * (log(17/16))^n). - _Vaclav Kotesovec_, Oct 06 2019 %p A187544 a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; %p A187544 seq(sum(combinat[stirling2](n,k)*a(k), k=0..n),n=0..12); %t A187544 a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] %t A187544 Table[Sum[StirlingS2[n, k]a[k], {k, 0, n}], {n, 0, 20}] %t A187544 CoefficientList[Series[1/2 + EllipticK[16*(E^x - 1)]/Pi, {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Oct 06 2019 *) %o A187544 (Maxima) a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; %o A187544 makelist(sum(stirling2(n,k)*a(k),k,0,n),n,0,12); %Y A187544 Cf. A187536, A008297, A111596, A187536, A187538, A187539, A187540, A187542, A187543, A187545, A187546, A187547, A187548. %K A187544 nonn,easy %O A187544 0,2 %A A187544 _Emanuele Munarini_, Mar 11 2011