cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187586 T(n,k)=Number of n-step E, S, NW and NE-moving king's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 6, 0, 16, 20, 8, 0, 25, 42, 48, 5, 0, 36, 72, 120, 84, 0, 0, 49, 110, 224, 286, 106, 0, 0, 64, 156, 360, 604, 578, 104, 0, 0, 81, 210, 528, 1038, 1484, 1069, 78, 0, 0, 100, 272, 728, 1588, 2794, 3514, 1708, 34, 0, 0, 121, 342, 960, 2254, 4508, 7480, 7666, 2309, 13
Offset: 1

Views

Author

R. H. Hardin Mar 11 2011

Keywords

Comments

Table starts
.1.4...9...16....25.....36.....49......64......81.....100.....121.....144
.0.6..20...42....72....110....156.....210.....272.....342.....420.....506
.0.8..48..120...224....360....528.....728.....960....1224....1520....1848
.0.5..84..286...604...1038...1588....2254....3036....3934....4948....6078
.0.0.106..578..1484...2794...4508....6626....9148...12074...15404...19138
.0.0.104.1069..3514...7480..12874...19696...27946...37624...48730...61264
.0.0..78.1708..7666..19104..35832...57592...84384..116208..153064..194952
.0.0..34.2309.15056..45718..95776..164135..250132..353767..475040..613951
.0.0..13.2792.27252.103108.246792..458018..732810.1069534.1468190.1928778
.0.0...0.3108.45960.219432.609070.1243461.2111652.3201436.4508924

Examples

			Some k=4 solutions for 4X4
..0..0..0..0....3..0..0..0....0..0..0..0....0..4..0..0....0..0..0..3
..0..0..0..0....4..2..0..0....4..2..0..0....3..0..0..0....0..0..2..4
..0..1..2..0....1..0..0..0....0..3..1..0....0..2..0..0....0..0..0..1
..0..0..3..4....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
		

Crossrefs

Row 2 is A002943(n-1)
Row 3 is A152750(n-1)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 6*k + 2
Empirical: T(3,k) = 16*k^2 - 40*k + 24
Empirical: T(4,k) = 58*k^2 - 204*k + 174 for k>2
Empirical: T(5,k) = 202*k^2 - 912*k + 994 for k>3
Empirical: T(6,k) = 714*k^2 - 3888*k + 5104 for k>4
Empirical: T(7,k) = 2516*k^2 - 15980*k + 24408 for k>5
Empirical: T(8,k) = 8819*k^2 - 63926*k + 111127 for k>6
Empirical: T(9,k) = 30966*k^2 - 251630*k + 489234 for k>7
Empirical: T(10,k) = 108852*k^2 - 978404*k + 2100276 for k>8