A187586 T(n,k)=Number of n-step E, S, NW and NE-moving king's tours on a kXk board summed over all starting positions.
1, 4, 0, 9, 6, 0, 16, 20, 8, 0, 25, 42, 48, 5, 0, 36, 72, 120, 84, 0, 0, 49, 110, 224, 286, 106, 0, 0, 64, 156, 360, 604, 578, 104, 0, 0, 81, 210, 528, 1038, 1484, 1069, 78, 0, 0, 100, 272, 728, 1588, 2794, 3514, 1708, 34, 0, 0, 121, 342, 960, 2254, 4508, 7480, 7666, 2309, 13
Offset: 1
Examples
Some k=4 solutions for 4X4 ..0..0..0..0....3..0..0..0....0..0..0..0....0..4..0..0....0..0..0..3 ..0..0..0..0....4..2..0..0....4..2..0..0....3..0..0..0....0..0..2..4 ..0..1..2..0....1..0..0..0....0..3..1..0....0..2..0..0....0..0..0..1 ..0..0..3..4....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 6*k + 2
Empirical: T(3,k) = 16*k^2 - 40*k + 24
Empirical: T(4,k) = 58*k^2 - 204*k + 174 for k>2
Empirical: T(5,k) = 202*k^2 - 912*k + 994 for k>3
Empirical: T(6,k) = 714*k^2 - 3888*k + 5104 for k>4
Empirical: T(7,k) = 2516*k^2 - 15980*k + 24408 for k>5
Empirical: T(8,k) = 8819*k^2 - 63926*k + 111127 for k>6
Empirical: T(9,k) = 30966*k^2 - 251630*k + 489234 for k>7
Empirical: T(10,k) = 108852*k^2 - 978404*k + 2100276 for k>8
Comments