A187589 Number of 6-step E, S, NW and NE-moving king's tours on an n X n board summed over all starting positions.
0, 0, 104, 1069, 3514, 7480, 12874, 19696, 27946, 37624, 48730, 61264, 75226, 90616, 107434, 125680, 145354, 166456, 188986, 212944, 238330, 265144, 293386, 323056, 354154, 386680, 420634, 456016, 492826, 531064, 570730, 611824, 654346, 698296
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..0..0..6....0..0..0..4....0..1..2..0....0..0..6..0 ..0..0..6..0....0..4..5..0....0..2..3..5....0..0..3..0....1..3..4..5 ..1..3..4..5....0..1..3..0....0..0..1..6....0..0..4..5....2..0..0..0 ..2..0..0..0....0..2..0..0....0..0..0..0....0..0..0..6....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187586.
Formula
Empirical: a(n) = 714*n^2 - 3888*n + 5104 for n>4.
Conjectures from Colin Barker, Apr 24 2018: (Start)
G.f.: x^3*(104 + 757*x + 619*x^2 + 41*x^3 - 93*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7.
(End)
Comments