A187591 Number of 8-step E, S, NW and NE-moving king's tours on an n X n board summed over all starting positions.
0, 0, 34, 2309, 15056, 45718, 95776, 164135, 250132, 353767, 475040, 613951, 770500, 944687, 1136512, 1345975, 1573076, 1817815, 2080192, 2360207, 2657860, 2973151, 3306080, 3656647, 4024852, 4410695, 4814176, 5235295, 5674052, 6130447, 6604480
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..6..0....3..1..0..0....0..0..0..0....0..0..6..7....0..0..0..0 ..4..5..7..8....4..2..7..8....1..5..6..7....4..5..0..8....1..0..0..6 ..0..3..0..0....5..6..0..0....2..3..4..8....2..3..0..0....2..4..5..7 ..0..1..2..0....0..0..0..0....0..0..0..0....0..1..0..0....3..0..0..8
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187586.
Formula
Empirical: a(n) = 8819*n^2 - 63926*n + 111127 for n>6.
Conjectures from Colin Barker, Apr 24 2018: (Start)
G.f.: x^3*(34 + 2207*x + 8231*x^2 + 7443*x^3 + 1481*x^4 - 1095*x^5 - 663*x^6) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9.
(End)
Comments