This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187596 #68 Feb 16 2025 08:33:14 %S A187596 1,1,1,1,0,1,1,1,1,1,1,0,2,0,1,1,1,3,3,1,1,1,0,5,0,5,0,1,1,1,8,11,11, %T A187596 8,1,1,1,0,13,0,36,0,13,0,1,1,1,21,41,95,95,41,21,1,1,1,0,34,0,281,0, %U A187596 281,0,34,0,1,1,1,55,153,781,1183,1183,781,153,55,1,1,1,0,89,0,2245,0,6728,0,2245,0,89,0,1,1,1,144,571,6336 %N A187596 Array T(m,n) read by antidiagonals: number of domino tilings of the m X n grid (m>=0, n>=0). %C A187596 A099390 supplemented by an initial row and column of 1's. %C A187596 See A099390 (the main entry for this array) for further information. %C A187596 If we work with the row index starting at 1 then every row of the array is a divisibility sequence, i.e., the terms satisfy the property that if n divides m then a(n) divide a(m) provided a(n) != 0. Row k satisfies a linear recurrence of order 2^floor(k/2) (Stanley, Ex. 36 p. 273). - _Peter Bala_, Apr 30 2014 %D A187596 R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997. %H A187596 Alois P. Heinz, <a href="/A187596/b187596.txt">Antidiagonals n = 0..80, flattened</a> %H A187596 James Propp, <a href="http://arxiv.org/abs/math/9904150">Enumeration of Matchings: Problems and Progress</a>, arXiv:math/9904150 [math.CO], 1999. %H A187596 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html">Chebyshev Polynomial of the second kind</a>. %H A187596 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial</a>. %F A187596 From _Peter Bala_, Apr 30 2014: (Start) %F A187596 T(n,k)^2 = absolute value of Product_{b=1..k} Product_{a=1..n} ( 2*cos(a*Pi/(n+1)) + 2*i*cos(b*Pi/(k+1)) ), where i = sqrt(-1). See Propp, Section 5. %F A187596 Equivalently, working with both the row index n and column index k starting at 1 we have T(n,k)^2 = absolute value of Resultant (F(n,x), U(k-1,x/2)), where U(n,x) is a Chebyshev polynomial of the second kind and F(n,x) is a Fibonacci polynomial defined recursively by F(0,x) = 0, F(1,x) = 1 and F(n,x) = x*F(n-1,x) + F(n-2,x) for n >= 2. The divisibility properties of the array entries mentioned in the Comments are a consequence of this result. (End) %e A187596 Array begins: %e A187596 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A187596 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... %e A187596 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... %e A187596 1, 0, 3, 0, 11, 0, 41, 0, 153, 0, 571, ... %e A187596 1, 1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, ... %e A187596 1, 0, 8, 0, 95, 0, 1183, 0, 14824, 0, 185921, ... %e A187596 1, 1, 13, 41, 281, 1183, 6728, 31529, 167089, 817991, 4213133, ... %e A187596 1, 0, 21, 0, 781, 0, 31529, 0, 1292697, 0, 53175517, ... %p A187596 with(LinearAlgebra): %p A187596 T:= proc(m,n) option remember; local i, j, t, M; %p A187596 if m<=1 or n<=1 then 1 -irem(n*m, 2) %p A187596 elif irem(n*m, 2)=1 then 0 %p A187596 elif m<n then T(n,m) %p A187596 else M:= Matrix(n*m, shape=skewsymmetric); %p A187596 for i to n do %p A187596 for j to m do %p A187596 t:= (i-1)*m+j; %p A187596 if j<m then M[t, t+1]:= 1 fi; %p A187596 if i<n then M[t, t+m]:= 1-2*irem(j, 2) fi %p A187596 od %p A187596 od; %p A187596 sqrt(Determinant(M)) %p A187596 fi %p A187596 end: %p A187596 seq(seq(T(m, d-m), m=0..d), d=0..14); # _Alois P. Heinz_, Apr 11 2011 %t A187596 t[m_, n_] := Product[2*(2+Cos[2*j*Pi/(m+1)]+Cos[2*k*Pi/(n+1)]), {k, 1, n/2}, {j, 1, m/2}]; t[_?OddQ, _?OddQ] = 0; Table[t[m-n, n] // FullSimplify, {m, 0, 13}, {n, 0, m}] // Flatten (* _Jean-François Alcover_, Jan 07 2014, after A099390 *) %Y A187596 Cf. A099390. %Y A187596 See A187616 for a triangular version, and A187617, A187618 for the sub-array T(2m,2n). %Y A187596 See also A049310, A053117. %K A187596 nonn,tabl %O A187596 0,13 %A A187596 _N. J. A. Sloane_, Mar 11 2011