cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A187625 Number of 3X3 0..n arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.

Original entry on oeis.org

24, 446, 2924, 12104, 37448, 98014, 221640, 457632, 871712, 1562702, 2649632, 4329136, 6782660, 10323450, 15291860, 22111560, 31246860, 43422938, 59215112, 79658992, 105617736, 138251814, 178796912, 229108212, 290437464, 364933542
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Row 2 of A187624

Examples

			Some n=3 solutions for 3X3
..3..0..3....3..0..3....2..2..2....1..3..0....1..1..3....0..2..3....1..3..1
..3..3..0....0..2..3....1..3..1....1..0..1....1..0..1....1..0..1....2..3..2
..3..0..3....3..0..3....2..2..2....3..3..1....0..1..3....1..2..2....1..3..1
		

A187621 Number of (n+1)X(n+1) 0..1 arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.

Original entry on oeis.org

10, 24, 2, 948, 36, 190972, 3020, 194618700, 929380, 1018751442652, 1744283776, 27189851221308572, 15262275217840
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 1 of A187624

Examples

			All solutions for 4X4
..1..1..0..1....1..0..1..1
..0..1..1..1....1..1..1..0
..1..1..1..0....0..1..1..1
..1..0..1..1....1..1..0..1
		

A187622 Number of (n+1)X(n+1) 0..2 arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.

Original entry on oeis.org

31, 446, 60, 324452, 70548, 6090023738, 720252796
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 2 of A187624

Examples

			Some solutions for 4X4
..1..2..0..2....2..2..0..2....1..1..2..1....1..2..1..1....2..0..1..2
..0..2..1..2....0..2..2..2....2..1..1..1....1..1..1..2....1..2..2..0
..1..2..1..0....2..2..2..0....1..1..1..2....2..1..1..1....0..2..2..1
..1..0..1..2....2..0..2..2....1..2..1..1....1..1..2..1....2..1..0..2
		

A187623 Number of (n+1)X(n+1) 0..3 arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.

Original entry on oeis.org

64, 2924, 390, 12278892, 4232368
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 3 of A187624

Examples

			Some solutions for 4X4
..1..0..2..3....1..1..0..1....1..3..2..3....2..1..0..2....1..2..1..2
..3..1..1..1....0..1..1..1....0..1..1..1....0..1..1..2....0..1..1..1
..1..1..1..3....1..1..1..0....1..1..1..0....1..1..1..1....1..1..1..0
..3..2..0..1....2..1..2..1....3..2..3..1....2..0..1..3....2..1..2..1
		

A187626 Number of 4X4 0..n arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.

Original entry on oeis.org

2, 60, 390, 2146, 5324, 16042, 28916, 71012, 121678, 216768, 302470, 606282, 785548
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Row 3 of A187624

Examples

			Some n=3 solutions for 4X4
..1..3..0..3....1..0..2..1....3..2..0..2....3..1..0..3....2..2..0..2
..0..3..1..3....3..1..1..0....2..2..1..2....0..3..3..1....0..2..2..3
..1..3..1..0....1..1..1..2....3..2..1..0....1..3..3..0....2..2..2..1
..2..3..2..3....3..2..0..1....1..0..1..2....3..0..1..3....2..0..2..3
		

A187627 Number of 5X5 0..n arrays with each 2X2 non-center subblock determinant nonzero and the array of 2X2 subblock determinants antisymmetric under 90 degree rotation.

Original entry on oeis.org

948, 324452, 12278892, 221177664, 1896404966
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Row 4 of A187624

Examples

			Some n=3 solutions for 5X5
..2..0..3..0..2....1..0..3..0..1....1..0..1..1..2....1..0..3..0..1
..0..2..3..2..3....0..2..0..2..0....0..2..0..2..2....0..2..1..2..1
..3..0..3..0..3....3..2..3..0..3....1..0..1..0..1....3..0..2..0..3
..1..2..0..2..1....0..2..0..2..0....0..2..1..2..2....0..2..0..2..2
..2..0..3..2..3....1..1..3..3..1....1..2..2..2..3....1..0..3..1..2
		
Showing 1-6 of 6 results.