cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A186148 Rank of (1/4)n^3 when {(1/4)i^3: i>=1} and {j^2>: j>=1} are jointly ranked with (1/4)i^3 before j^2 when (1/4)i^3=j^2. Complement of A186149.

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 29, 32, 36, 40, 44, 47, 52, 56, 60, 64, 69, 73, 78, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 133, 138, 143, 149, 155, 160, 166, 172, 178, 183, 189, 195, 201, 208, 214, 220, 226, 233, 239, 245, 252, 258, 265, 272, 278, 285, 292, 299, 306, 313, 319, 327, 334, 341, 348, 355, 362, 370, 377, 384, 392, 399, 407, 414, 422, 430, 437, 445, 453, 461, 468, 476, 484, 492, 500
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2011

Keywords

Comments

See A187645.

Examples

			Write preliminary separate rankings:
1/4...2....27/4....16.....125/4...
....1...4.......9..16..25........36..49
Then replace each number by its rank, where ties are settled by ranking the top number before the bottom.
		

Crossrefs

Programs

  • Mathematica
    d=1/8; u=1/4; v=1; p=3; q=2;
    h[n_]:=((u*n^p-d)/v)^(1/q);
    a[n_]:=n+Floor[h[n]]; (* rank of u*n^p *)
    k[n_]:=((v*n^q+d)/u)^(1/p);
    b[n_]:=n+Floor[k[n]]; (* rank of v*n^q *)
    Table[a[n],{n,1,100}] (* A186148 *)
    Table[b[n],{n,1,100}] (* A186149 *)

Formula

a(n) = n + floor(((1/4)*n^3 - 1/8)^(1/2)).

A187640 Number of (n+2)X3 0..2 arrays with each 3X3 subblock having sum 9.

Original entry on oeis.org

3139, 17701, 101419, 596653, 3703651, 23126677, 145502251, 935121589, 6025592131, 38949920557, 254629101139, 1667294249173, 10939228709659, 72317298989221, 478748984330419, 3174887984002333, 21179786460551971
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 1 of A187645

Examples

			Some solutions for 4X3
..2..0..0....0..0..1....1..2..0....2..0..2....1..2..0....2..0..2....1..2..0
..0..2..2....2..1..1....1..1..0....0..1..0....1..2..0....2..0..0....2..2..0
..1..1..1....2..2..0....2..1..1....1..2..1....2..1..0....2..1..0....0..1..1
..0..1..1....0..0..1....0..1..2....2..0..2....1..1..1....2..2..0....1..1..1
		

Formula

Empirical: a(n)=7*a(n-1)+448*a(n-3)-3136*a(n-4)-60597*a(n-6)+424179*a(n-7)+3015306*a(n-9)-21107142*a(n-10)-49152096*a(n-12)+344064672*a(n-13)+216040608*a(n-15)-1512284256*a(n-16)

A187641 Number of (n+2)X4 0..2 arrays with each 3X3 subblock having sum 9.

Original entry on oeis.org

17701, 79259, 363533, 1747075, 9368309, 51019403, 283738813, 1661843915, 9825500309, 58770460003, 361966285061, 2243939191979, 14018792443981, 89240424327899, 570881059653413, 3672734493171955, 23937367270575029
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 2 of A187645

Examples

			Some solutions for 6X4
..0..0..2..0....0..0..2..0....0..0..2..1....0..0..1..0....0..0..0..0
..1..2..0..1....1..0..2..1....1..1..0..2....1..1..2..2....2..2..2..1
..1..2..1..1....2..2..0..2....2..2..1..0....2..1..1..1....1..2..0..2
..2..0..0..2....0..0..2..0....1..0..1..2....1..0..0..1....0..0..0..0
..0..2..1..0....2..0..1..2....1..1..0..2....1..1..2..2....2..2..2..1
..1..1..2..1....0..2..2..0....2..2..1..0....1..1..2..0....1..0..2..2
		

Formula

Empirical: a(n)=10*a(n-1)-21*a(n-2)+1179*a(n-3)-11790*a(n-4)+24759*a(n-5)-617826*a(n-6)+6178260*a(n-7)-12974346*a(n-8)+191371452*a(n-9)-1913714520*a(n-10)+4018800492*a(n-11)-39296551266*a(n-12)+392965512660*a(n-13)-825227576586*a(n-14)+5685269974278*a(n-15)-56852699742780*a(n-16)+119390669459838*a(n-17)-601117515776444*a(n-18)+6011175157764440*a(n-19)-12623467831305324*a(n-20)+47542191308281032*a(n-21)-475421913082810320*a(n-22)+998386017473901672*a(n-23)-2854901415527246781*a(n-24)+28549014155272467810*a(n-25)-59952929726072182401*a(n-26)+131363016062080959063*a(n-27)-1313630160620809590630*a(n-28)+2758623337303700140323*a(n-29)-4653876942691669277370*a(n-30)+46538769426916692773700*a(n-31)-97731415796525054824770*a(n-32)+127104364341223563535956*a(n-33)-1271043643412235635359560*a(n-34)+2669191651165694834255076*a(n-35)-2671034245317344639898792*a(n-36)+26710342453173446398987920*a(n-37)-56091719151664237437874632*a(n-38)+42973718542999741813111920*a(n-39)-429737185429997418131119200*a(n-40)+902448089402994578075350320*a(n-41)-524945753995638939106975200*a(n-42)+5249457539956389391069752000*a(n-43)-11023860833908417721246479200*a(n-44)+4808879538561612672778008000*a(n-45)-48088795385616126727780080000*a(n-46)+100986470309793866128338168000*a(n-47)-32452815343848522029571600000*a(n-48)+324528153438485220295716000000*a(n-49)-681509122220818962621003600000*a(n-50)+157206092834527473963441600000*a(n-51)-1572060928345274739634416000000*a(n-52)+3301327949525076953232273600000*a(n-53)-525563702247928386006720000000*a(n-54)+5255637022479283860067200000000*a(n-55)-11036837747206496106141120000000*a(n-56)+1137501980268153329088000000000*a(n-57)-11375019802681533290880000000000*a(n-58)+23887541585631219910848000000000*a(n-59)-1416061344057218107200000000000*a(n-60)+14160613440572181072000000000000*a(n-61)-29737288225201580251200000000000*a(n-62)+759486915141786720000000000000*a(n-63)-7594869151417867200000000000000*a(n-64)+15949225217977521120000000000000*a(n-65)

A187642 Number of (n+2)X5 0..2 arrays with each 3X3 subblock having sum 9.

Original entry on oeis.org

101419, 363533, 1342083, 5273797, 24351579, 115259453, 564564211, 3003056861, 16240656315, 89645104453, 519095822283, 3041331131645, 18065636068579, 110621336092493, 683205533634603, 4260820568077237, 27116433602180379
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 3 of A187645

Examples

			Some solutions for 4X5
..0..1..2..1..1....0..1..1..1..1....0..0..2..0..0....0..2..1..1..1
..1..1..2..2..1....1..1..0..1..1....1..1..0..2..2....1..2..0..1..2
..2..0..0..0..0....1..2..2..0..2....1..2..2..0..1....2..1..0..1..2
..1..0..2..2..0....0..1..1..1..1....0..2..0..0..2....1..1..1..2..0
		

A187643 Number of (n+2) X 6 0..2 arrays with each 3 X 3 subblock having a sum of 9.

Original entry on oeis.org

596653, 1747075, 5273797, 17048731, 67476109, 275808307, 1180360357, 5652251635, 27729452461, 140207992699, 758880838813, 4181652023251, 23526377578933, 138205654308355, 822362988368317, 4963895328442891
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 4 of A187645.

Examples

			Some solutions for 4 X 6
..0..1..1..0..0..2....0..2..0..0..2..0....0..1..2..0..0..2....0..2..1..1..2..0
..0..1..1..1..2..2....0..1..1..2..2..2....0..0..1..1..2..1....0..1..2..0..1..2
..2..1..2..1..1..0....2..1..2..0..0..1....2..1..2..1..0..2....1..2..0..0..2..1
..0..1..1..0..0..2....1..0..1..1..0..1....2..1..0..2..0..0....1..0..2..2..0..1
		

Crossrefs

Cf. A187645.

A187639 Number of (n+2)X(n+2) 0..2 arrays with each 3X3 subblock having sum 9.

Original entry on oeis.org

3139, 79259, 1342083, 17048731, 234213387
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Diagonal of A187645

Examples

			Some solutions for 4X4
..0..2..0..1....1..1..1..0....1..2..1..0....1..2..1..1....0..1..2..0
..1..0..0..0....1..1..0..1....1..1..0..0....1..0..0..2....2..0..0..1
..2..2..2..2....0..2..2..1....0..1..2..2....2..2..0..1....1..1..2..2
..0..0..2..1....1..1..1..0....1..2..1..0....1..2..1..1....1..0..2..1
		

A187644 Number of (n+2)X7 0..2 arrays with each 3X3 subblock having sum 9.

Original entry on oeis.org

3703651, 9368309, 24351579, 67476109, 234213387
Offset: 1

Views

Author

R. H. Hardin Mar 12 2011

Keywords

Comments

Column 5 of A187645

Examples

			Some solutions for 4X7
..0..1..2..0..1..1..0....0..1..2..1..2..2..0....0..0..2..0..2..1..1
..0..0..1..1..1..2..0....0..2..2..0..2..1..1....0..2..1..1..0..2..0
..1..2..2..0..1..2..1....1..1..0..0..0..1..0....1..2..1..0..2..1..0
..0..1..2..0..1..1..0....1..0..2..2..1..2..1....0..0..2..0..2..1..1
		
Showing 1-7 of 7 results.