cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187653 Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).

This page as a plain text file.
%I A187653 #20 Oct 19 2024 08:33:23
%S A187653 1,2,10,115,2108,52006,1606229,59550709,2575966264,127343893378,
%T A187653 7081926869746,437585883729512,29740614295527535,2205002457135885616,
%U A187653 177099066222770055407,15317784128757306540986,1419476705128570400447376
%N A187653 Binomial cumulative sums of the central Stirling numbers of the second kind (A007820).
%H A187653 Vincenzo Librandi, <a href="/A187653/b187653.txt">Table of n, a(n) for n = 0..100</a>
%F A187653 a(n) = Sum_{k=0..n} binomial(n,k)*S(2*k,k).
%F A187653 a(n) ~ exp(c*(2-c)/4) * StirlingS2(2*n,n) ~ 2^(2*n-1/2)*n^(n-1/2)/(sqrt(Pi*(1-c))*exp(n-c*(2-c)/4)*(c*(2-c))^n), where c = - LambertW(-2/exp(2)) = 0.406375739959959907676958... - _Vaclav Kotesovec_, Jan 02 2013
%F A187653 O.g.f.: Sum_{n>=0} n^(2*n)/n! * x^n/(1-x)^(n+1) * exp(-n^2*x/(1-x)). - _Paul D. Hanna_, Jan 02 2013
%p A187653 seq(sum(binomial(n,k)*combinat[stirling2](2*k,k),k=0..n),n=0..12);
%t A187653 Table[Sum[Binomial[n, k]StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
%o A187653 (Maxima) makelist(sum(binomial(n,k)*stirling2(2*k,k),k,0,n),n,0,12);
%o A187653 (PARI) a(n)=polcoeff(sum(m=0,n,m^(2*m)/m!*x^m/(1-x)^(m+1)*exp(-m^2*x/(1-x+x*O(x^n)))),n)
%o A187653 for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, Jan 02 2013
%Y A187653 Cf. A007820.
%K A187653 nonn,easy
%O A187653 0,2
%A A187653 _Emanuele Munarini_, Mar 12 2011