This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187654 #18 Aug 03 2021 01:53:01 %S A187654 1,2,14,262,7740,305536,15061692,890220752,61347750704,4829414749504, %T A187654 427559293150976,42047904926171552,4547772798257998256, %U A187654 536504774914535869664,68557641564333466819744,9433619169586732241895776 %N A187654 Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646). %H A187654 Vincenzo Librandi, <a href="/A187654/b187654.txt">Table of n, a(n) for n = 0..100</a> %F A187654 a(n) = Sum_{k=0..n} binomial(n,k)*s(2k,k). %F A187654 a(n) ~ exp((2*c-1)/(8*c^2)) * abs(Stirling1(2*n,n)) ~ 2^(3*n-1) * n^n * exp((2*c-1)/(8*c^2)-n) * c^(2*n) / (sqrt(Pi*n*(c-1)) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - _Vaclav Kotesovec_, May 21 2014 %p A187654 seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12); %t A187654 Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}] %o A187654 (Maxima) makelist(sum(binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12); %o A187654 (PARI) a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(2*k, k, 1))); \\ _Michel Marcus_, Aug 03 2021 %Y A187654 Cf. A187646. %K A187654 nonn,easy %O A187654 0,2 %A A187654 _Emanuele Munarini_, Mar 12 2011