cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187654 Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).

This page as a plain text file.
%I A187654 #18 Aug 03 2021 01:53:01
%S A187654 1,2,14,262,7740,305536,15061692,890220752,61347750704,4829414749504,
%T A187654 427559293150976,42047904926171552,4547772798257998256,
%U A187654 536504774914535869664,68557641564333466819744,9433619169586732241895776
%N A187654 Binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
%H A187654 Vincenzo Librandi, <a href="/A187654/b187654.txt">Table of n, a(n) for n = 0..100</a>
%F A187654 a(n) = Sum_{k=0..n} binomial(n,k)*s(2k,k).
%F A187654 a(n) ~ exp((2*c-1)/(8*c^2)) * abs(Stirling1(2*n,n)) ~ 2^(3*n-1) * n^n * exp((2*c-1)/(8*c^2)-n) * c^(2*n) / (sqrt(Pi*n*(c-1)) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... - _Vaclav Kotesovec_, May 21 2014
%p A187654 seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
%t A187654 Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
%o A187654 (Maxima) makelist(sum(binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
%o A187654 (PARI) a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(2*k, k, 1))); \\ _Michel Marcus_, Aug 03 2021
%Y A187654 Cf. A187646.
%K A187654 nonn,easy
%O A187654 0,2
%A A187654 _Emanuele Munarini_, Mar 12 2011