cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187657 Binomial convolution of the central Stirling numbers of the second kind.

This page as a plain text file.
%I A187657 #11 May 31 2025 06:54:19
%S A187657 1,2,16,222,4416,114660,3676814,140408338,6222858240,314006546124,
%T A187657 17774855765140,1115507717954432,76871991664546170,
%U A187657 5770732305836768712,468750121409142448386,40964179307489016777630,3832326196169482368117760
%N A187657 Binomial convolution of the central Stirling numbers of the second kind.
%F A187657 a(n) = Sum_{k=0..n} binomial(n,k) * S(2k,k) * S(2n-2k,n-k).
%F A187657 Limit n->infinity (a(n)/n!)^(1/n) = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.17655460948348... . - _Vaclav Kotesovec_, Jun 01 2015
%p A187657 seq(sum(binomial(n, k) *combinat[stirling2](2*k, k) *combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
%t A187657 Table[Sum[Binomial[n, k]StirlingS2[2k, k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 16}]
%o A187657 (Maxima) makelist(sum(binomial(n,k)*stirling2(2*k,k)*stirling2(2*n-2*k, n-k),k,0,n),n,0,12);
%Y A187657 Cf. A384471, A384472.
%K A187657 nonn,easy
%O A187657 0,2
%A A187657 _Emanuele Munarini_, Mar 12 2011